
Software Design Description for

Electronic Commerce Processing Node

Version 2.2

June 1999

Inter-National Research Institute, Inc.
12350 Jefferson Avenue, Suite 400

Newport News, Virginia 23602

SDD for ECPN Version 2.2

he first

tion, and

der the
The following trademarks and registered trademarks are mentioned in this document. Within the text of this
document, the appropriate symbol for a trademark (™) or a registered trademark (®) appears after t
occurrence of each item.

Acrobat is a registered trademark of Adobe Systems Incorporated.

CLEO is a registered trademark of Interface Systems, Incorporated.

Kermit is a registered trademark of Henson and Associates, Inc.

Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corpora
Netscape Enterprise Server is a trademark of Netscape Communications Corporation.

Oracle is a registered trademark of Oracle Corporation.

UNIX is a registered trademark of The Open Group.

Copyright © 1999
Inter-National Research Institute, Inc.

All Rights Reserved

This material may be reproduced by or for the U.S. Government pursuant to the copyright license un
clause at DFARS 252.227-7013 (NOV 1995).

Software Design Description

Contents

1.0 Scope 1

1.1 Identification 1
1.2 System Overview 1
1.3 Document Overview 2

2.0 Referenced Documents 3

3.0 CSCI-Wide Design Decisions 4

4.0 Architectural Design 5

4.1 Architectural Overview 5
4.2 Computer Software Components 6

4.2.1 Data Management 6
4.2.2 Communications 6
4.2.3 X12 Message Processing 6
4.2.4 Translation 6
4.2.5 Audit 6
4.2.6 Alert Management 7
4.2.7 Executive 7

4.3 Message Processing Flow 7
4.3.1 X12 Message Processing 7
4.3.2 UDF Message Processing 7

4.3.2.1 Incoming UDF 8
4.3.2.2 Outgoing UDF 9

4.3.3 X12 and UDF Message Processing 10
4.4 Interface Design 10

5.0 ECPN CSCI Detailed Design 12

5.1 Data Management 12
5.1.1 RPCServer 13

5.1.1.1 Database, Log, and Queue Rectifications 13
5.1.1.2 Database, Log, and Queue Creation 14

5.1.2 Databases 15
5.1.2.1 Database API 15

5.1.3 Logs 19
5.1.3.1 Log API 20

5.1.4 Queues 22
SDD FOR ECPN VERSION 2.2 • JUNE 1999 i

CONTENTS
5.1.4.1 Queue API 22
5.1.5 Hash Tables 25

5.1.5.1 Hash Table Creation 25
5.1.5.2 Hash Table Implementation 26
5.1.5.3 Hash Table API 26
5.1.5.4 Miscellaneous RPCServer Remote Procedure Calls 27

5.1.6 Message Object 29
5.1.6.1 Message Object API 29
5.1.6.2 Message Object Field Descriptions 30

5.2 Communications 40
5.2.1 EditChannels 40
5.2.2 Comms 40

5.2.2.1 Scheduling Sessions 41
5.2.2.2 Communications Sessions 41
5.2.2.3 Comms Children Database 42
5.2.2.4 Serial Sessions 42
5.2.2.5 Kermit 43
5.2.2.6 ZMODEM 46
5.2.2.7 CLEO 46

5.2.3 FTP Sessions 47
5.2.4 File Transfer Protocol Daemon (ftpd) 52
5.2.5 Email Send Electronic Mail (email_meta/email_send) 52
5.2.6 Electronic Mail Daemon (emaild) 55
5.2.7 Channel Status 56
5.2.8 Incoming X12 Queue 56
5.2.9 Outgoing Communication Queues 60
5.2.10 Channel Database 61

5.3 X12 Message Processing 64
5.3.1 Regular Received X12 Handling 64
5.3.2 Translated UDF to X12 Handling 64
5.3.3 UDF to X12 Retranslate 64
5.3.4 System Generated File Handling 65
5.3.5 Reroute Handling 65
5.3.6 Retransmit Handling 65
5.3.7 Message Report Handling 65
5.3.8 SPS-EDA Handling 66
5.3.9 Parsing 66

5.3.9.1 Element Validation 66
5.3.9.2 Element Storage 66
5.3.9.3 Logging and Message Object Storage 67

5.3.10 Route Lookup 67
5.3.10.1 824 Routing 68
5.3.10.2 997 Routing 68
5.3.10.3 Message Route Database 68

5.3.11 Queueing 69
5.4 Audit 70

5.4.1 Message Log Database 70
5.4.2 Error Queue 71
ii SDD FOR ECPN VERSION 2.2 • JUNE 1999

CONTENTS
5.4.3 Channel Log 72
5.4.4 Incoming X12 Queue Viewer 73
5.4.5 Message Log Viewer 73
5.4.6 Error Queue Viewer 73
5.4.7 Journal Data Summary (JDS) Viewer 75
5.4.8 Raw Message Viewer 76
5.4.9 Channel Log Viewer 77
5.4.10 Email Domain Queue Viewer 78
5.4.11 Channel Queue Viewer 78
5.4.12 Rejected Email Box Viewer 78
5.4.13 RDBMS Injector 79
5.4.14 RDBMS Retrieval 80
5.4.15 RDBMS Message Database 81
5.4.16 RDBMS Table Database 82

5.5 Translation 83
5.5.1 UDF to X12 Translator 83

5.5.1.1 Processing Flow 84
5.5.1.2 Channel Configuration 85
5.5.1.3 Maps and TSI/Mercator 86
5.5.1.4 UDF to X12 Processing Details 86

5.5.2 Trading Partner Database (TPDB) 89
5.5.3 System Setup Database 91
5.5.4 X12 to UDF Translator 91

5.5.4.1 Processing Flow 91
5.5.4.2 X12 to UDF Processing Details 92

5.6 Alert Management 95
5.6.1 Alert Daemon 95
5.6.2 Alert Notifier 95
5.6.3 Alert Notifier Database 95

5.7 Executive 96

6.0 Requirements Traceability 97

7.0 Acronyms 98

List of Appendices

Appendix A Alerts 101

Appendix B System Capacities 102

Appendix C Glossary 103

Appendix D Message Object Parse API 104
 SDD FOR ECPN VERSION 2.2 • JUNE 1999 iii

CONTENTS
List of Figures

Figure 4-1 ECPN Component Decomposition 5
Figure 4-2 X12 Message Processing 7
Figure 4-3 UDF Incoming Message Processing 8
Figure 4-4 UDF Outgoing Message Processing 9
Figure 4-5 X12 and UDF Message Processing 10

Figure 5-1 Hash Table Data Structure 26
Figure 5-2 UDF to X12 Processing Flow: Translation 84
Figure 5-3 UDF to X12 Processing Flow: Decoding/Routing 85
Figure 5-4 X12 to UDF Processing Flow: Translation 92

List of Tables

Table 4-1 Communication Interface COTS Products and Standards 10

Table 5-1 Message Object Fields 30
Table 5-2 Message Object err_type/error_expansion Values 38
Table 5-3 Kermit Operation String/Action Relationship 44
Table 5-4 Kermit Channel Fields (AsyncStruct) 45
Table 5-5 CLEO Channel Fields (CleoStruct) 47
Table 5-6 FTP Channel Fields (FTPStruct) 50
Table 5-7 Email Stats DB Fields (EMAIL_STATS) 53
Table 5-8 Email Channel Fields (EmailStruct) 55
Table 5-9 Channel Status Database (CHAN_STAT_REC) 56
Table 5-10 Incoming X12 Queue Fields (IN_X12_FILE_REC) 57
Table 5-11 UDF to X12 Translator Structure (UDF2X12_REC) 59
Table 5-12 Outgoing Communication Queue Fields (OUT_CHAN_REC) 60
Table 5-13 Channel Database Fields 61
Table 5-14 Message Route Database Fields (ROUTE_REC) 69
Table 5-15 Daily Message Log Database Fields (MSG_LOG_REC) 70
Table 5-16 Error Queue Fields (MSG_LOG_REC) 72
Table 5-17 JDS Viewer Message Journal Pane 75
Table 5-18 Channel Log Fields (CHNL_LOG_REC) 77
Table 5-19 RDBMS Queue Table (OUT_RDBMS_REC) 79
Table 5-20 Transaction Queue Table (OUT_TRANS_REC) 80
Table 5-21 RDBMS Message Database Fields 81
Table 5-22 RDBMS Table Database Fields 82
Table 5-23 Comms to Translation Queue Fields for UDF to X12 Translation

(UDF2X12_QREC) 87
Table 5-24 Translator to Router Queue Fields for UDF to X12 Translation

(IN_UDF2X12_REC) 88
Table 5-25 Trading Partner Profile Database Fields for Translation 89
Table 5-26 CCR 838 Parsed Fields 90
Table 5-27 Router to Translator Queue Fields for X12 to UDF Translation
iv SDD FOR ECPN VERSION 2.2 • JUNE 1999

CONTENTS
(X122UDF_QREC) 93
Table 5-28 Translator to Router Queue Fields for X12 to UDF Translation

(X122UDF_REC) 93
Table 5-29 Translator to Comms Queue Fields for X12 to UDF Translation

(OUT_CHAN_REC) 94
Table 5-30 Alert Notifier Fields 96

Table B-1 Capacities 102
 SDD FOR ECPN VERSION 2.2 • JUNE 1999 v

CONTENTS
This page has been intentionally left blank.
vi SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

oint

a
1.0 Scope
This Software Design Description (SDD) applies to Version 2.2 of the Electronic Commerce
Processing Node (ECPN). This document follows the standards set forth in Military Standard
Software Development and Documentation (MIL-STD-498) and in the associated Data Item
Description (DID) for a Software Design Description (DI-IPSC-81435), as tailored by Inter-
National Research Institute (INRI).

1.1 Identification

ECPN is a Computer System Configuration Item (CSCI) of the Electronic Commerce/
Electronic Data Interchange (EC/EDI) system.

1.2 System Overview

ECPN is being developed by INRI for the Defense Information Systems Agency (DISA). The
role of ECPN is to serve as a single interface between the Government and its commercial
trading partners for conducting EC/EDI. ECPN must ensure interoperability, economies of
scale, and compliance to standards established by the Department of Defense (DoD) and
Federal Program Office (PO).

The functional objectives of ECPN are to:

• Provide rigorous end-to-end accountability within the ECPN system, with no single p
of failure that could result in loss or nondelivery of data

• Implement a Relational Database Management System (RDBMS) for storage of dat
passing through the ECPN

• Provide automated archive and retrieval mechanisms for messages and system
configuration data

• Provide system performance information, including transaction statistics and
communications status
SDD FOR ECPN VERSION 2.2 • JUNE 1999 1

SOFTWARE DESIGN DESCRIPTION

SCSCs

 units.

CSC of

N

ge
1.3 Document Overview

This document describes the design for the ECPN CSCI of the EC/EDI system, including the
allocation of requirements to the Computer Software Components (CSCs) and Sub-Computer
Software Components (SCSCs) that compose ECPN.

This document contains the following sections and appendices:

Scope
States the purpose of the EC/EDI system; describes the role of ECPN within EC/EDI; and
states the purpose of this SDD. (Section 1.0)

Referenced Documents
Lists the documents applicable to this SDD. (Section 2.0)

CSCI-Wide Design Decisions
Addresses ECPN’s behavioral design and the selection and design of the CSCs and
that make up this CSCI. (Section 3.0)

Architectural Design
Identifies the CSCs that compose ECPN and the concept of execution among these
(Section 4.0)

ECPN CSCI Detailed Design
Describes the design decisions and any constraints associated with each CSC and S
ECPN. (Section 5.0)

Requirements Traceability
Describes the traceability between the ECPN requirements in this SDD and the ECP
system requirements. (Section 6.0)

Acronyms
Defines the acronyms used in this SDD. (Section 7.0)

Alerts
Defines the ECPN alerts and the processes that generate each of them. (Appendix A)

System Capacities
Describes the capacities of the ECPN data repositories. (Appendix B)

Glossary
Defines many terms used throughout this SDD. (Appendix C)

Message Object Parse API
Describes the API that allows you to specify a segment filter and apply it to a messa
object. (Appendix D)
2 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

.

ty
2.0 Referenced Documents
The following documents are referenced in this SDD. In the event of a later version of a
referenced document being issued, the later version shall supersede the referenced version.

• Cleo 3780Plus User’s Guide, Interface Systems, Inc., May 1995.

• Data Item Description - Software Design Description (DI-IPSC-81435), December 1994

• Electronic Data Interchange Draft Version 3 Release 5 X12 Standards, Data Interchange
Standards Association, Inc., December 1994.

• Federal Acquisition Guidelines (FAR), Draft Federal Government Implementation
Guidelines, Part 10, July 1997.

• Kermit: Specification and Verification, Huggins, James K., EECS Department, Universi
of Michigan, Ann Arbor, MI.

• Mercator: Execution Engine Core API Reference Guide, TSI International Software, Ltd.,
1997.

• Mercator: Map Editor Reference Guide, TSI International Software, Ltd., 1997.

• Military Standard Software Development and Documentation (MIL-STD-498),
Department of Defense, December 1994.

• Software Requirements Specification for Electronic Commerce Processing Node, Version
2.2, April 1999.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 3

SOFTWARE DESIGN DESCRIPTION
3.0 CSCI-Wide Design Decisions
The selection and design of the CSCs that make up this CSCI are based on Section 3.0 of the
Software Requirements Specification (SRS) for Electronic Commerce Processing Node.
4 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

r
tative
4.0 Architectural Design
This section describes the following architectural design elements of ECPN:

• Architectural overview
• Computer Software Components (CSCs)
• Message processing flow
• Interface design

4.1 Architectural Overview

Figure 4-1 depicts the architectural layout of the system. Note that SCSCs and Compute
Software Units (CSUs) are shown only for the Alert Management CSC, but are represen
of the SCSCs and CSUs for each CSC. (For definitions of these terms, see Appendix C.)

Figure 4-1 ECPN Component Decomposition
SDD FOR ECPN VERSION 2.2 • JUNE 1999 5

SOFTWARE DESIGN DESCRIPTION

 and
d
 via

net

nterpret
ains the
rimary

e log,
4.2 Computer Software Components

This section identifies the ECPN CSCs, describes their high-level functions, and summarizes
their constituent SCSCs.

4.2.1 Data Management

The Data Management CSC provides the data access model and software units for managing
databases, logs, queues, and message information. The Data Management CSC provides multi-
user and distributed access to the information it maintains. This CSC consists of the
RPCServer, the message object SCSCs, and the system setup database.

4.2.2 Communications

The Communications CSC is responsible for transmitting and receiving UDF and X12
messages using various protocols; managing the communication channels; and reporting
channel status.

The Communications CSC supports asynchronous serial communication with the Kermit®
ZMODEM protocols; bisynchronous serial communication with the CLEO® protocol; an
network-based Transmission Control Protocol/Internet Protocol (TCP/IP) communication
FTP and electronic mail (Simple Mail Transport Protocol [SMTP] with Multi-purpose Inter
Mail Extension [MIME]). This CSC consists of: EditChannels, Comms (Kermit, CLEO,
ZMODEM, FtpComms), Ftpd, email-meta/emailsend, emaild, ChanStat, incoming and
outgoing channel queues, and the channel database.

4.2.3 X12 Message Processing

The X12 Message Processing CSC contains those SCSCs and data elements used to i
X12 messages and route messages to the communication channels. This CSC also cont
graphical user interface (GUI) applications that manage the routing of messages. The p
component of the X12 Message Processing CSC is the Router.

4.2.4 Translation

The Translation CSC converts UDF messages to X12 messages and also converts X12
messages to UDF messages. The primary components of the Translation CSC are the InXlator,
OutXlator, and TPProfile (trading partner database).

4.2.5 Audit

The Audit CSC is responsible for creating and managing an audit trail for all messages
processed by ECPN. The primary components of the Audit CSC are a RDBMS, messag
error queue, channel logs, channel queues, and email domain queue.
6 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

I.
PN
4.2.6 Alert Management

The Alert Management CSC provides a single mechanism for generating and managing alerts
across the ECPN CSCI. The components of this CSC are the alert daemon, alert notifier, alert
notifier database, and alert database.

4.2.7 Executive

The ECPN CSCI uses the COE CSCI Executive for launching and managing the processes of
ECPN.

4.3 Message Processing Flow

This section describes the high-level message processing flow of the ECPN CSCI. The system
processes two categories of messages–X12 and UDF. X12 is the ANSI benchmark for EC/ED
UDF is a general term meaning “user-defined file”. Each system that interfaces with EC
requires a different UDF. ECPN converts UDFs to X12 format (as described in Section 5.5) for
processing and, if necessary, converts them back to UDF format for delivery.

4.3.1 X12 Message Processing

When an X12 message is received by incoming communications, it is passed to the Router. The
Router processes the message, determines the intended recipients, and identifies the
appropriate outgoing communications channel(s). If the message is to be sent as an X12, it is
forwarded directly to the outgoing communications channel(s).

Figure 4-2 X12 Message Processing

4.3.2 UDF Message Processing

UDF messages can be received and transmitted by the system. Because the primary message
type processed by EPCN is X12, the system must translate all UDFs to X12 in order to archive
and route the messages in a consistent manner.

Communications
Incoming

Router
Outgoing

Communications
X12 X12X12 X12

Processes Processes
SDD FOR ECPN VERSION 2.2 • JUNE 1999 7

SOFTWARE DESIGN DESCRIPTION
4.3.2.1 Incoming UDF

Incoming UDF messages are queued from incoming communications to the Translator. The
Translator then converts the messages from UDF to X12 and queues the converted X12
messages to the Router.

Figure 4-3 UDF Incoming Message Processing

Communications
Incoming

Router

UDF to X12
Translation

UDF X12

UDF

Processes
8 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION
4.3.2.2 Outgoing UDF

The Router processes the X12 message, determines the intended recipient, and identifies the
appropriate outgoing communication channel(s). If the message is to be sent to a UDF-based
channel, the Router queues the message to the X12 to UDF Translator for conversion. The
resulting UDF message is then queued to outgoing communications and transmitted.

Figure 4-4 UDF Outgoing Message Processing

Router
Outgoing

Communications

X12 to UDF
Translation

UDFX12

UDF

Processes
SDD FOR ECPN VERSION 2.2 • JUNE 1999 9

SOFTWARE DESIGN DESCRIPTION
4.3.3 X12 and UDF Message Processing

Figure 4-5 depicts the entire message processing capability. Messages can be received and sent
as either UDF or X12, but all messages processed by the Router must be in X12 format.

Figure 4-5 X12 and UDF Message Processing

4.4 Interface Design

ECPN is developed using open system components and standards. In its role as a
communications relay between government and industry, ECPN relies upon commercially
available communication interfaces. When possible, ECPN builds upon existing commercial
off-the-shelf (COTS) software and adheres to the de-facto standards relevant to a given
communications protocol. The communication standards and COTS products used by ECPN
are outlined in Table 4-1.

Communications
Incoming

Router
Outgoing

Communications

UDF to X12
Translation

X12 to UDF
Translation

X12

UDF UDF

X12

X12 X12

UDF

X12 X12

UDFProcessesProcesses

Table 4-1 Communication Interface COTS Products and Standards

Communication Type COTS Product Standards

FTP FTP libs 4.01, Wu-ftpd

2.4.2-B121

RFC 793, RFC 959

Email (SMTP and MIME) c-client, Sendmail 8.7.6 RFC 793, RFC 821 (SMTP), RFC
2045 (MIME)

Kermit Kermit 6.0 Kermit Specification and
Verification

ZMODEM rz 3.42, sz 3.40 N/A

CLEO CLEO 05265 (3780) Cleo 3780Plus User’s Guide
10 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION
1 Modified by INRI.

For more detailed information, see the Interface Design Description (IDD) for the Electronic
Commerce Processing Node.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 11

SOFTWARE DESIGN DESCRIPTION

record
 can

version
5.0 ECPN CSCI Detailed Design
This section describes the ECPN CSCs, their constituent SCSCs, and their primary data
elements. The CSC descriptions include a summary of the SCSCs that comprise each CSC
along with any constraints, limitations, or unusual features in the design of the software unit.
Unless otherwise noted, all CSUs are written in the C programming language.

5.1 Data Management

The Data Management CSC provides access and management interfaces for the various
databases, queues, logs, and message storage mechanisms used within EPCN. The CSUs that
make up the Data Management CSC are stored within the Data Management local and remote
libraries. The CSUs within these libraries implement the same application programming
interface (API), but the data access method used by each library varies: the local library
routines use file input / output (I / O), and the remote library components use remote procedure
calls (RPCs). The local library is used by core processes that require high-speed access to data
(e.g., the Router). The remote library is used by GUI applications and provides access to data
on a remote computer system.

There are two distinct views, families of APIs, and methods for accessing data: local and
remote. Local access to data is performed using file I/O, while data integrity is ensured by using
file and record locking to serialize data access between processes. Data accessed via the local
versions of an API is always consistent and up-to-date. Local access is used by core ECPN
processes such as the Router and provides high-performance data access. Local data is accessed
via the APIs stored in the local library.

Conversely, an application requiring remote data access uses RPCs to obtain the same data
from the RPCServer. Once returned from the RPCServer, the data records are stored in
dynamically allocated memory, representing a snapshot of the database. Because the remote
library maintains a snapshot of the data, that data may become out-of-date with the data in the
file (whether a remote or local file). Database and record versioning are used to ensure that
operations on out-of-date records do not occur. Remote data access is supported by the APIs
stored in the remote library.

To illustrate remote access, consider two users viewing data from record 1 in a database. While
user A is viewing the data, user B is also viewing the same data, modifies part or all of the
record, and stores the modified record in the database. At this point, user A is looking at an out-
of-date version of record 1. When user A modifies and then attempts to store data, the remote
library code silently passes version information about the record to the RPCServer. By
comparing the current version of record 1 with the version passed in the transaction, the
RPCServer determines that user A’s modification request is based on an old version of
1 and returns an OUT-OF-DATE error to the application. If requested, user A’s application
issue a db_update() call to synchronize the remote snapshot of the data with the current
stored on disk.
12 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

pply:

tabase
d and

ord to

trieved
ted.

he

ueue
hecks

utine
ponding
Another distinction between local and remote data access is that the remote versions of the
APIs cannot lock resources.

The Data Management CSC consists of the following SCSCs:

• RPCServer
• Databases
• Logs
• Queues
• Hash Tables
• Message Object

Within the context of the Data Management CSC description, the following definitions a

Database
A database provides random access to the records it contains. Records within the da
are unordered and may be retrieved by record number or by starting at the first recor
iterating to each subsequent record.

Log
Records within a log cannot be deleted and may only be added by appending the rec
the log.

Queue
Queues maintain stores of records grouped by precedence. Individual records are re
by specifying the precedence of the record to be retrieved. Records can also be dele

Hash Table
Hash tables provide very fast lookups of records based on fields within the record.

5.1.1 RPCServer

The RPCServer manages requests from applications requiring remote access to data. T
RPCServer provides access to message objects (as described in Section 5.1.6), databases, logs,
and queues.

5.1.1.1 Database, Log, and Queue Rectifications

Database rectifications are used to perform server-side actions on a database, log, or q
whenever a database entry is modified, added, or deleted. Rectification routines perform c
to determine whether a requested action should be allowed. They also ensure that
synchronization occurs between multiple RPC databases. For example, a rectification ro
is used to ensure that each time a channel is added to the channels database, a corres
entry is added to the channel status database.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 13

SOFTWARE DESIGN DESCRIPTION

ver
 in the

ver
n the

rity

 src/
ry.

(if it

n
ond,
tiate

 e.g.,
To install a rectification routine, do the following:

a. Add the rectification routine to db_rect.c (in src/c/system/RPCServer). The arguments
to every rectification routine are the same, and are as follows:

– trans: The action being performed (DBT_STORE, DBT_MERGE, or
DBT_DELETE)

– rec_num: The database record number being acted on

– db_ptr: A pointer to the record on disk being acted on (NULL if the RPCSer
is performing an append). This argument is of the same type as the entries
database.

– item: A pointer to the record being changed or added (NULL if the RPCSer
is performing a delete). This argument is of the same type as the entries i
database.

– filename: A pointer to the database filename (currently unused)

– username: The user requesting the operation (for future security checks)

– host: The host from which the operation is being requested (for future secu
checks)

– open_db: A pointer to the (already open) database, log, or queue.

b. Add a function declaration for the rectification routine to src/c/inc/EC/db_rect.h.

c. Add the rectification function to the db_tab[] table. The db_tab[] table is defined in
c/inc/EC/db_tab.h. The rectification routine is the third argument in the table ent

Each time the RPCServer performs a store or delete operation, the rectification routine
exists) is run, and the return value is checked before continuing with the operation. The
database APPEND operation may result in two calls to the rectification routine. First, if a
existing record is being replaced, a DELETE operation calls the rectification routine. Sec
the database rectification routine is called from within the STORE operation. To differen
between STORE and APPEND operations, check the db_ptr argument—it will be NULL for
APPENDs.

5.1.1.2 Database, Log, and Queue Creation

Databases, logs, and queues are created by processes using the appropriate open call,
db_open() or log_open(), with the DB_CREATE flag set.
14 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

rased,
.

tabase
a
ration.

into the
if an
fetched.
5.1.2 Databases

A database provides random access to the records it contains. Records within the database are
unordered and may be retrieved by record number or by starting at the first record and iterating
to each subsequent record.

5.1.2.1 Database API

The following functions make up the database API. Most of these functions operate on the
RPC_DATABASE handle that is obtained when the database is opened with the db_open()
function.

int
db_alloc(RPC_DATABASE *dbp)
db_alloc() returns the record number of an available record in the database or DB_EOF if no
free records exist.

int
db_append(RPC_DATABASE *dbp, const void *data)
db_append() behaves like db_store() except that the data is stored in the first free
record. db_append() returns the record number where the data was stored on success or
DB_EOF on error.

unsigned long
db_capacity(RPC_DATABASE *dbp)
db_capacity() returns the capacity that was used when the database was opened.

void
db_close(RPC_DATABASE *dbp)
db_close() closes the database and frees all associated memory.

int
db_delete(RPC_DATABASE *dbp, int rec_no)
db_delete() deletes the record ‘rec_no’. This record will be marked free, its data will be e
and it will not be available for fetching. db_delete() returns 1 on success and 0 on error

const char *
db_error(RPC_DATABASE *dbp)
db_error() returns a null-terminated string describing the last error associated with the da
represented by dbp. Note that db_error() and the value of dbp->err are valid only when
database action fails. Their behavior is undefined if they are used after a successful ope

int
db_fetch(RPC_DATABASE *dbp, int rec_no, const void *data)
db_fetch() fetches the data associated with record number ‘rec_no’ and places that data
area pointed to by ‘data’. db_fetch() returns the record number on success or DB_EOF
error occurs. Records that have not already been stored (i.e., free records) may not be
SDD FOR ECPN VERSION 2.2 • JUNE 1999 15

SOFTWARE DESIGN DESCRIPTION

nction

out
 for

will
on will
ions
char *
db_filename(RPC_DATABASE *dbp)
db_filename() returns a null-terminated string representing the filename associated with
database ‘dbp’.

int
db_first(RPC_DATABASE *dbp)
db_first() returns the record number of the first stored record in the database.

int
db_free(RPC_DATABASE *dbp)
db_free() returns the record number of the first free record in the database.

DB_REC_HDR *
db_hdr(RPC_DATABASE *dbp, int record)
db_hdr() returns a pointer to the database record header represented by record. This fu
should not normally be used by most applications.

unsigned long
db_id_num(RPC_DATABASE *dbp)
db_id_num() returns the ‘id’ of database ‘dbp’. This ‘id’ is used to determine whether the
database needs to be converted.

unsigned long
db_in_use(RPC_DATABASE *dbp)
db_in_use() returns the number of stored records in the database.

int
db_last(RPC_DATABASE *dbp)
db_last() returns the record number of the last stored record in the database.

void
db_lock(RPC_DATABASE *dbp)
db_lock() will lock an entire database. As in the use of file locks, db_lock() will only lock
those processes that attempt to lock the database before use. This operation is a no-op
applications that access data remotely, because such applications cannot lock data.

int
db_lock_record(RPC_DATABASE *dbp, int rec_no, int block)
db_lock_record() locks the record ‘rec_no’. As in the use of file locks, db_lock_record()
only lock out those processes that attempt to lock the same record before use. This functi
block the caller if the block parameter is non-zero. This operation is a no-op for applicat
that access data remotely, because such applications cannot lock data.
16 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

OF is
e key
ee

‘dbp’.

o’ is
 will
 the
red’

ity)
f the
 the
 the
alue
r

tead of
e
int
db_lookup(RPC_DATABASE *dbp, void *keyp, int nbytes)
db_lookup() performs a lookup of the key ‘keyp’ in the associated database hash table,
assuming one is available. If a hash table is not available or the key is not found, DB_E
returned. If the hash table is available and the key is found, the record number where th
may be found is returned. For a complete description of the RPC database hash table, s
Section 5.1.5.2.

long
db_ltom(RPC_DATABASE *dbp)
db_ltom() returns the last time of modification for database ‘dbp’.

char *
db_mod_host(RPC_DATABASE *dbp)
db_mod_host() returns the hostname associated with the last modification of database

int
db_mod_uid(RPC_DATABASE *dbp)
db_mod_uid() returns the user id of the last user that modified database ‘dbp’.

int
db_next(RPC_DATABASE *dbp, int rec_no)
db_next() returns the record number of the record following ‘rec_no’. If the record ‘rec_n
free, db_next() will return the next free record. If the record ‘rec_no’ is not free, db_next()
return the next ‘stored’ record. db_next() will return DB_EOF on error or when it reaches
end of the database. The following line of code is commonly used to run through the ‘sto
records in a database:

for (r=db_first(dbp); r != DB_EOF; r=db_next(dbp, r))
;

RPC_DATABASE *
db_open(const char *filename, int mode, DBF_FORMATS format, unsigned long capac
db_open() will open a database with the given filename. The ‘format’ parameter is one o
enumerated types DBF_FORMATS found in db.h and specifies the data that is stored in
database. This format is mapped to a record type in db.h and db_tab.c. The capacity is
maximum number of entries allowed in the database. For ‘unlimited’ capacity, set this v
to MAXINT. This function returns an RPC_DATABASE * that will be used in all the othe
database APIs or NULL on error.

int
db_prev(RPC_DATABASE *dbp, int rec_no)
db_prev() works the same as db_next() except it returns the previous record number, ins
the next record number. db_prev() returns DB_EOF when it reaches the beginning of th
database.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 17

SOFTWARE DESIGN DESCRIPTION

, it

red in
uence

the yth

 that
r

s not

 no-op

().
cations
int
db_rec_free(RPC_DATABASE *dbp, int record)
db_rec_free() returns a non-zero value if the database record ‘record’ is free. Otherwise
returns 0.

unsigned long
db_rec_size(RPC_DATABASE *dbp)
db_rec_size() returns the size (in bytes) of a record stored in database ‘dbp’.

unsigned long
db_rec_version(RPC_DATABASE *dbp, int record)
db_rec_version() returns the database version for record ‘record’.

unsigned long *
db_records(RPC_DATABASE *dbp)
db_records() returns a pointer to an array containing the record number of all records sto
the database. This array of record numbers is generated by the db_first()/db_next() seq
above. The db_records call is useful when an application needs to fetch the xth through
element in a database.

void
db_set_id_num(RPC_DATABASE *dbp, unsigned long id_num)
db_set_id_num() sets the database ‘id’ for database ‘dbp’. This ‘id’ will later be used to
determine whether a database needs to be converted.

int
db_store(RPC_DATABASE *dbp, int rec_no, const void *data)
db_store() stores the data represented by the ‘data’ parameter in the record ‘rec_no’. If
record was a free record, it will automatically be marked ‘in_use’ and will be available fo
fetching. db_store() returns 1 on success or 0 on error.

void
db_sync(RPC_DATABASE *dbp)
db_sync() writes all memory-mapped data for a given database to disk. This operation i
normally necessary for applications.

void
db_unlock(RPC_DATABASE *dbp)
db_unlock() releases the lock on a database obtained via db_lock(). This operation is a
for applications that access data remotely, because such applications cannot lock data.

void
db_unlock_record(RPC_DATABASE *dbp, int rec_no)
db_unlock_record() will release the lock on record ‘rec_no’ obtained via db_lock_record
This operation is a no-op for applications that access data remotely, because such appli
cannot lock data.
18 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

s

es the
 flushed
ing of
on

 be
base

ies is
int
db_update(RPC_DATABASE *dbp)
db_update() updates the data in the remote database copy to match the copy on the server. This
operation is a no-op for applications that access data locally, because such applications use
direct file I/C.

void
db_update_ltom(RPC_DATABASE *dbp, int uid, const char *host)
db_update_ltom() updates the last time of modification (to the current time), the user (uid) that
last modified the database ‘dbp’, and the hostname from where the last modification wa
originated.

unsigned long
db_version(RPC_DATABASE *dbp)
db_version() returns the global database version number.

void
disable_db_cache(void)
disable_db_cache() will disable the database cache. Internally, the database code cach
most recently used databases. When an application calls db_close(), the database data is
to disk, but the database is not necessarily unmapped. This allows for the efficient open
frequently used databases. Disabling the database cache will seriously impact applicati
performance in most cases, so it should be used with caution.

void
enable_db_cache(void)
enable_db_cache() will enable the database cache after it has been disabled by calling
disable_db_cache(). The database cache is enabled by default, so this function will only
necessary if disable_db_cache() has been used. For a complete description of the data
cached, see disable_db_cache().

5.1.3 Logs

The log API provides methods to create and manipulate a log. Allowable API operations
include appending to the end of the log and modifying the data in a record. Deleting entr
not allowed.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 19

SOFTWARE DESIGN DESCRIPTION

a into
OF if

be

se
ns that
5.1.3.1 Log API

int
log_append(RPC_LOG *logp, const void *data)
log_append() behaves like log_store() except that the data is stored in the first free
record. log_append() returns the record number where the data was stored on success or
DB_EOF on error.

unsigned long
log_capacity(RPC_LOG *logp)
log_capacity() returns the capacity that was used when the log was opened.

void
log_close(RPC_LOG *logp)
log_close() will close ‘logp’ that was opened via a log_open () call and free all associated
memory.

int
log_fetch(RPC_LOG *logp, int rec_no, const void *data)
log_fetch() will fetch the data associated with record number ‘rec_no’ and place that dat
the area pointed to by ‘data’. log_fetch() returns the record number on success or DB_E
an error occurs. Records that have not already been stored (i.e., free records) may not
fetched.

int
log_free(RPC_LOG *logp)
log_free() returns the record number of the first free record in the log.

int
log_first(RPC_LOG *logp)
log_first() returns the record number of the first stored record in the log.

unsigned log
log_in_use(RPC_LOG *logp)
log_in_use() returns the number of stored records in the log.

int
log_last(RPC_LOG *logp)
log_last() returns the record number of the last stored record in the log.

void
log_lock(RPC_LOG *logp)
log_lock() will lock an entire log. As in the use of file locks, log_lock() will only lock out tho
processes that attempt to lock the log before use. This operation is a no-op for applicatio
access data remotely, because such applications cannot lock data.
20 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

o’ is
t()
hes
d’

ity)
of the
 the
the
lue to
 or

stead
f the

 by the
n

If that
r

ccess

. This
 use
int
log_next(RPC_LOG *logp, int rec_no)
log_next() returns the record number of the record following ‘rec_no’. If the record ‘rec_n
free, log_next() will return the next free record. If the record ‘rec_no’ is not free, log_nex
will return the next ‘stored’ record. log_next() will return DB_EOF on error or when it reac
the end of the log. The following line of code is commonly used to run through the ‘store
records in a log:

for (r=log_first(logp); r != DB_EOF; r=log_next(logp, r))
;

RPC_LOG *
log_open(const char *filename, int mode, DBF_FORMATS format, unsigned long capac
log_open() will create a database with the given filename. The ‘format’ parameter is one
enumerated types DBF_FORMATS found in db.h and specifies the data that is stored in
database. This format is mapped to a record type in db.h and db_tab.c. The capacity is
maximum number of entries allowed in the database. For unlimited capacity, set this va
MAXINT. This function returns an RPC_LOG * that will be used in all the other log APIs
NULL on error.

int
log_prev(RPC_LOG *logp, int rec_no)
log_prev() works the same as log_next() except it returns the previous record number, in
of the next record number. log_prev() returns DB_EOF when it reaches the beginning o
log.

unsigned long *
log_records(RPC_LOG *logp)
log_records() returns a pointer to an array of records. This array of records is generated
log_first()/log_next() sequence above. The log_records call is useful when an applicatio
needs to fetch the xth through the yth element in a log.

int
log_store(RPC_LOG *logp, int rec_no, const void *data)
log_store() will store the data represented by the ‘data’ parameter in the record ‘rec_no’.
record was a free record, it will automatically be marked ‘in_use’ and will be available fo
fetching. log_store() returns 1 on success or 0 on error.

void
log_unlock(RPC_LOG *logp)
log_unlock() will release the lock on a log. This operation is a no-op for applications that a
data remotely, because such applications cannot lock data.

int
log_update(RPC_LOG *logp)
log_update() will update the data in the remote log copy to match the copy on the server
operation is a no-op for applications that access data locally, because such applications
direct file I/C.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 21

SOFTWARE DESIGN DESCRIPTION

prec’.
F on

s non-
 more

 call.

e
k on

to the
 error.
5.1.4 Queues

The queue API provides methods to create and manipulate multi-precedence, first-in first-out
(FIFO) queues. The maximum number of precedences is 20.

Allowable API operations include appending to the end of the queue (at the correct
precedence), modifying the data in a record, and deleting an entry from the queue. APIs also
exist that allow a consumer of the queue data to block on an empty queue.

The queue API allows multiple consumers to process distinct entries within the same queue.
Typically, this is done by having a master consumer process that monitors the growth of the
queue and spawns additional consumer processes. The consumer processes act upon and
remove entries in the queue until all entries have been processed, at which point all consumer
processes, except the master consumer, terminate. The consumer processes use
q_fetch_and_lock() to retrieve each record and, thereby, prevent another consumer process
from retrieving the same record. Should a consumer process terminate abnormally, any locks
placed on the record by that process using q_set_and_lock() will be removed. This action
allows the record to be processed by another consumer process.

5.1.4.1 Queue API

int
q_append(RPC_QUEUE *qp, int prec, const void *data)
q_append() inserts the data represented by ‘data’ as the last element with precedence ‘
q_append() returns the record number where the data was stored on success or DB_EO
error. If the queue was empty before this append and the pid field in the queue header i
zero, the calling process will send a SIGUSR1 signal to the process specified by ‘pid.’ For
detail see the description of q_fetch_and_lock().

void
q_close(RPC_QUEUE *qp)
q_close() takes an RPC_QUEUE * argument that was the result of a previous q_open()
This function will close the queue and free all associated memory.

int
q_delete(RPC_QUEUE *qp, int rec_no)
q_delete() will delete the record ‘rec_no’. This record will be marked free, its data will b
erased, and it will not be available for fetching. If the calling process holds a record loc
this record, q_delete() will release it. q_delete() returns 1 on success and 0 on error.

int
q_fetch(RPC_QUEUE *qp, int rec_no, const void *data)
q_fetch() will fetch the data associated with record number ‘rec_no’ and place that data in
area pointed to by ‘data’. q_fetch() returns the record number on success or DB_EOFon
Records that have not already been stored (i.e., free records) may not be fetched.
22 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

g
v’

nt by

ue is

ary.

rec’.

se
ations

ence
. The
int
q_fetch_and_lock(RPC_QUEUE *qp, void *data, struct timeval *tv)
q_fetch_and_lock() fetches and locks the next available record in the queue. Locking the
individual record keeps that record from being used by other processes that use
q_fetch_and_lock() to retrieve records. If more than one process is feeding from the same
queue, they should all use q_fetch_and_lock(). While q_fetch() will fetch records, it will not
obey the record locking that is implemented in q_fetch_and_lock(), thus allowing processes to
step on each other. ‘*tv’ represents the amount of time to block in this function while waitin
for an entry. If ‘tv’ is NULL, q_fetch_and_lock() will block on an empty queue forever. If ‘t
is non-NULL, q_fetch_and_lock() will block for the time specified in ‘tv’.

q_fetch_and_lock() installs a signal handler to handle the SIGUSR1 signal that will be se
a process that appends to an empty queue.

q_fetch_and_lock() returns DB_EOF on a failed fetch or if a timeout occurs and the que
still empty; otherwise, it will return the record number that was fetched and locked.
q_fetch_and_lock() should not be used by those applications linked with the remote libr

int
q_first(RPC_QUEUE *qp)
q_first() returns the record number of the first stored record in the queue.

unsigned long
q_in_use(RPC_QUEUE *qp)
q_in_use() returns the number of stored records in the queue.

unsigned long
q_in_use_prec(RPC_QUEUE *qp, int prec)
q_in_use_prec() returns the number of stored records in the queue at the precedence ‘p

void
q_lock(RPC_QUEUE *qp)
q_lock() will lock an entire queue. As in the use of file locks, q_lock() will only lock out tho
processes that attempt to lock the queue before use. This operation is a no-op for applic
that access data remotely, because such applications cannot lock data.

int
q_next(RPC_QUEUE *qp, int rec_no)
q_next() returns the record number of the record following ‘rec_no’ based on FIFO preced
ordering. db_next() will return DB_EOF on error or when it reaches the end of the queue
following line of code is commonly used to run through the records in a queue in FIFO
precedence order:

for (r=q_first(qp); r != DB_EOF; r=q_next(qp, r))
;

SDD FOR ECPN VERSION 2.2 • JUNE 1999 23

SOFTWARE DESIGN DESCRIPTION

meter
t is
pacity

value
eue

ad of
queue.

 a
process
r the
hereby
s that

If that
r

at
RPC_QUEUE *
q_open(const char *filename, int mode, QF_FORMATS format, unsigned long capacity)
q_open() will create a FIFO-precedence queue with the given filename. The ‘format’ para
is one of the enumerated types QF_FORMATS found in db.h and specifies the data tha
stored in the queue. This format is mapped to a record type in db.h and queue.c. The ca
is the maximum number of entries allowed in the queue. For unlimited capacity, set this
to MAXINT. This function returns either an RPC_QUEUE * to be used in all the other qu
APIs or NULL on error.

int
q_prev(RPC_QUEUE *qp, int rec_no)
q_prev() works the same as q_next() except it returns the previous record number, inste
the next record number. q_prev() returns DB_EOF when it reaches the beginning of the

int
q_rec_prec(RPC_QUEUE *qp, int rec_no)
q_rec_prec() returns the precedence of the record ‘rec_no’ or DB_EOF on error.

time_t
q_rec_toq(RPC_QUEUE *qp, int rec_no)
q_rec_toq() returns the time-of-queue for the record ‘rec_no’ or DB_EOF on error.

void
q_set_pid(RPC_QUEUE *qp, long pid)
q_set_pid() places the process id specified by ‘pid’ into the pid field of the queue. When
process appends an entry to an empty queue, the process will send a SIGUSR1 to the
identified by ‘pid’. Because the process identified by ‘pid’ has specified a signal handler fo
SIGUSR1 signal, that process can be notified when an empty queue contains data and t
avoid repeated polling to find non-empty queues. This operation is a no-op for application
access data remotely, because such applications cannot lock data.

int
q_store(RPC_QUEUE *qp, int rec_no, const void *data)
q_store() will store the data represented by the ‘data’ parameter in the record ‘rec_no’.
record was a free record, it will automatically be marked ‘in_use’ and will be available fo
fetching. q_store() returns 1 on success or 0 on error.

void
q_unlock(RPC_QUEUE *qp)
q_unlock() will release the lock on a queue. This operation is a no-op for applications th
access data remotely, because such applications cannot lock data.

void
q_unlock_record(RPC_QUEUE *qp, int rec_no)
q_unlock_record() will release the lock on record ‘rec_no’. This operation is a no-op for
applications that access data remotely, because such applications cannot lock data.
24 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

sh table
ss

dition of
must

priate
 the
 of a

ion is
void
q_update(RPC_QUEUE *qp)
q_update() will update a remote application’s copy of the queue to match the copy on the
server. This operation is a no-op for applications that access data locally, because such
applications use direct file I/C.

5.1.5 Hash Tables

For those databases that require fast, efficient lookups, hash tables are available. The ha
code implements a disk-based hash table. The hash table API provides concurrent acce
between processes during lookups and is non-volatile and very tunable.

5.1.5.1 Hash Table Creation

The only code necessary to ensure that a hash table is created and maintained is the ad
‘get_key()’ functions to the db_tab table (found in db_tab.h). These get_key() functions
match this prototype:

int
get_key(const void *datap, void **rsltp, int *nbytesp)

‘datap’ is a pointer to the data, which should be cast to the type of variable that is appro
for this function. ‘*rsltp’ should point to the beginning of the field that should be entered in
hash table. *nbytesp should be filled in with the length (in bytes) of the key. An example
get_key() function follows:

typedef struct {
char name[25];
int date;
} FOO;

int
get_name(void *datap, void **rsltp, int *nbytesp)
{
FOO *p = (FOO *)datap;
*rsltp = p->name;
*nbytes = strlen(p->name);
}

More than one get_key() function may be defined for a given database. The only restrict
that the actual keys that are added must be unique.

To make use of the hash table, use db_lookup() (described in Section 5.1.2.1).
SDD FOR ECPN VERSION 2.2 • JUNE 1999 25

SOFTWARE DESIGN DESCRIPTION

rn 1
5.1.5.2 Hash Table Implementation

A hash table consists of a bucket directory and a number of buckets. The bucket directory
consists of one or more file blocks, and a bucket consists of exactly one block. The bucket
directory is indexed by the hash value of the key. From that index into the bucket directory, the
buckets are then searched for the key. The records in each bucket are sorted by the data value,
so a binary search of the data is used to speed up the search. If the key is not found in the first
bucket, any and all subsequent data blocks are searched until the last block is searched or the
key is found.

Figure 5-1 Hash Table Data Structure

5.1.5.3 Hash Table API

When accessing a hash table that is associated with a database, the database API manages the
hash table using the hash table API. This API should only be used directly when implementing
hash tables outside of the scope of the RPC databases. The following is a description of the hash
table API.

void
ht_close(HTBL *hp)
ht_close() closes a hash table and frees all associated memory.

int
ht_delete(HTBL *hp, void *keyp, int nbytes)
ht_delete() performs a lookup of ‘keyp’ and deletes the entry if found. ht_delete() will retu
on success and 0 on failure.

unsigned long
ht_get_version(HTBL *hp)
ht_get_version() returns the version of a hash table.

Bucket 0

Header

Bucket n

Bucket 1

bucket directory

......

r1 r2 r3 r4 r5 r6 r7 r8

data block data block
26 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

ber

up()

acity’

 be
.

y and

 filling

ntents
int
ht_insert(HTBL *hp, int rec, void *keyp, int nbytes)
ht_insert() will insert ‘keyp’ into the hash table. ‘rec’ is also stored with ‘keyp’ and will be
returned when a lookup of ‘keyp’ is performed. ht_insert() returns 0 on failure or the num
of disk block accesses required to insert this entry on success.

int
ht_lookup(HTBL *hp, void *keyp, int nbytes)
ht_lookup() performs a lookup of ‘keyp’ and, if found, returns the associated ‘rec’. ht_look
returns -1 on error, or the ‘rec’ on success.

HTBL *
ht_open(char fname, int capacity, int maxkeysize, int blockspervalue)
ht_open() opens a disk-based hash table. ‘fname’ is the filename of the file to open. ‘cap
is the expected number of entries in the hash table. ‘maxkeysize’ is the number of bytes
required by the largest key. ‘blockspervalue’ is the number of blocks the user wanted to
allocated to each hash value. ‘vers’ is the version of the hash table and it is user-defined

ht_open() returns a NULL on error, or a pointer to a HTBL on success.

void
ht_print(HTBL *hp)
ht_print() prints information about a hash table, including each entry in the bucket director
the total number of records in each entry.

void
ht_set_version(HTBL *hp, unsigned long vers)
ht_set_version() sets the version of a hash table.

5.1.5.4 Miscellaneous RPCServer Remote Procedure Calls

int
append_file(char *filename, char *buf, int buflen)
append_file() appends a buffer to an ASCII file.

int
rpc_fetch_file(char *fname, char **buffer, int size, char *hostname, char **error)
rpc_fetch_file() connects to the RPCServer on the specified host, and then fetches a file,
the “buffer” variable with the contents of the file.

int
rpc_store_file(char *fname, char *buffer, int size, char *hostname, char **error)
rpc_store_file() connects to the RPCServer on the specified host, and then writes the co
of “buffer” to the specified file on the remote host.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 27

SOFTWARE DESIGN DESCRIPTION

the

,

erver.

 file.
int
rpc_append_file(char *fname, char *buffer, int size, char *hostname, char **error)
rpc_append_file() connects to the RPCServer on the specified host, and then appends the
contents of “buffer” to the specified file on the remote host.
int rpc_msg_annotate(char *msn, char *annotation, char *hostname, char **error)
rpc_msg_annotate() annotates a message object through the RPCServer.

int
read_seg(char *filename, int offset, size_t size, char *buffer, char **error);
read_seg() reads a segment of “size” bytes from a file, beginning at “offset”, and stores
results in the variable “buffer”.

int
rpc_read_directory(char ***file_list, char *directory, int exclude_subdirs, char *hostname
char **error);
rpc_read_directory() reads the contents of a directory on a remote host through the RPCS
If “exclude_subdirs” is set, only files are included in the resulting list.

int
rpc_delete_file(char *fname, char *hostname, char**error);
rpc_delete_file() connects to the RPCServer on a remote host and deletes the specified
28 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
5.1.6 Message Object

The message object is the primary storage place for raw and derived information on a single
message. The message object contains the message text, any errors or alerts associated with the
message, a list of actions taken on the message, as well as any ECPN administrator annotations.
For the purpose of this description, a message is defined as all of the text within a single X12
ISA envelope (ISA/IEA pair). Each message object is stored on disk in an architecture-neutral,
compressed data file, and the data files are stored in Daily/<yyyymmdd>/Archives/msg_objs.
APIs exist for accessing each of the individual pieces of a message object (not shown here).

The message sequence number (MSN) uniquely identifies each message within the system. The
format of the MSN is a one-letter site ID followed by an eight-digit counter, a slash, the four-
digit year, the two-digit month, and the two-digit day on which the message was received (e.g.,
c00000001/19970721). The eight-digit counter is reset to 1 each day at midnight (Universal
Time Coordinate [UTC]). This MSN format provides for storing a maximum of 99,999,999
ISAs each day.

Message objects are created by the Router process and updated by the outgoing X12 to UDF
Translator and outgoing communications processes. User access to the message object content
is available through several paths, including all applications that use the Journal Data
Summary (JDS) Viewer (described in Section 5.4.7) and the Raw Viewer (described in
Section 5.4.8).

5.1.6.1 Message Object API

The following functions are used to open, update, store, and close.

EC_MSG_OBJ *
open_msg_obj (char *MSN, int flags, int mode);
open_msg_obj() opens a message object (using the format nnnnnnnn/yyyymmdd). The flags
and mode have the same meaning as in open(2). In addition, the message object is locked as
shared mode, exclusive for read-only mode, or read-write opens mode, respectively.

int
store_msg_obj (char *MSN, EC_MSG_OBJ * m);
store_msg_obj() writes the given message object to disk, closes it, and frees it.

int
close_msg_obj (EC_MSG_OBJ * m);
close_msg_obj() closes a message object and frees it.

EC_MSG_OBJ *
alloc_msg_obj (void);
alloc_msg_obj() creates a new message object in memory only (not associated with a file).
store_msg_obj() must be called to save that new message object to disk.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 29

SOFTWARE DESIGN DESCRIPTION FOR ECPN
int
flush_msg_obj (EC_MSG_OBJ * m);
flush_msg_obj() writes an already open message object to disk. flush_msg_obj() simply calls
write_msg_obj().

int
write_msg_obj (EC_MSG_OBJ * m, int fd);
write_msg_obj() writes a message object to disk.

int
detach_msg_obj (EC_MSG_OBJ * m);
detach_msg_obj() detaches a message object from its file, leaving only a copy in memory. If a
message object is open read-write, it is flushed to disk before it is detached. This should be used
by calling routines that only need a snapshot of the message object.

EC_MSG_OBJ *
reopen_msg_obj (EC_MSG_OBJ * m, char *new_name, int flags, int mode);
reopen_msg_obj() assigns a message object to a new file, and then closes the old file. This will
work even if the old object is only memory-resident.

free_msg_obj(EC_MSG_OBJ *m)
free_msg_obj() frees up any memory associated with a message object.

5.1.6.2 Message Object Field Descriptions

Table 5-1 Message Object Fields

Field Name Type Description

version int Version number of the message object database

open_flags int open() flags--used internally

open_fd int File descriptor for message object--used internally

segments flist_segs Packages the following pieces (indicated by
indention):

seg_type int Numeric hash value of segment type. Segment type
is stored as an integer to provide fast segment
lookups. The HASH macro converts a segment
name into a hash value. This hash value is
generated using a shift-left hash function on the
segment ID string (e.g., an “ISA” segment ID
would generate a seg_type value of ((‘I’ << 24) +
(‘S’ << 16) + (‘A’ << 8) + ‘\0’)

seg_content BINARYSTRING Contains the entire X12 segment through the
segment terminator (e.g., an ISA “line”)
30 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
errors flist_errs Packages the following pieces (indicated by
indention):

err_type int Numeric value depicting the type of error (e.g., ISA
Parse Error). This value is derived from a CSC
mask and a specific error value. The CSC masks are
used throughout processing to identify the origin of
an error. For a list of possible mask values, see
Table 5-2. The specific error value is set but not
currently used in processing.

msg_seg_num int Index of the segment in msg_seg[] in which the
error was identified

msg_seg_offset int Offset of the segment in msg_seg[] in which the
error was identified

error_expansion wrapstring Description string associated with the err_type. For
a list of possible values, see Table 5-2.

chan_name wrapstring Outgoing channel where error occurred

x12_vals x12_obj Packages the following pieces (indicated by
indention):

record int Record number of message object

source int Input channel mask

msgtype wrapstring Type of channel on which the message was
originally received. Possible values:
X12, DBMS 1.0, DIFMS, DWAS, GAFS, IFAS,
IPC, ITIMP, LEGACY, SAACONS, SIFS, SPS,
Stanfins 1.0, STARS.

msn wrapstring Message sequence number (format: nnnnnnnn/
yyyymmdd)

mask int Bitmask (0=int/ext, 1=user/non-user, 2=ascii/
binary data)

precedence int (Unused)

direction int VAN->GW or GW->VAN

logname wrapstring Relative path for message log

SrcChnl wrapstring Incoming channel name

InCharCount int Number of bytes in incoming source message

SrcChnlXref wrapstring XREF (3-letter identifier) associated with source
channel

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
SDD FOR ECPN VERSION 2.2 • JUNE 1999 31

SOFTWARE DESIGN DESCRIPTION FOR ECPN
ArchFilename wrapstring Filename of compression file that the incoming
communications process used to store the original
received content

RemoteInFileName wrapstring Incoming filename

IsaNum int ISA Control Number (ICN) (X12 ISA13)

ISATo wrapstring Receiver Interchange (X12 ISA08)

ISAFrom wrapstring Sender Interchange (X12 ISA06)

ElemSep u_char Element Separator (extracted from the 4th byte
position of the incoming ISA segment)

SubElemSep u_char Subelement Separator (X12 ISA16)

SegTerm u_char Segment Terminator (extracted from the 106th byte
position of the incoming ISA segment)

gs_list flist_x12_gs Packages the following pieces (indicated by
indention):

flags long Bitmask indicating messages that were generated
by the Translator (e.g., 824, 997)

ai_qual wrapstring ISA Line Authorization Information Qualifier
(X12 ISA01)

ai wrapstring ISA Line Authorization Information (X12 ISA02)

si_qual wrapstring ISA Line Security Information Qualifier (X12
ISA03)

si wrapstring ISA Line Security Information (X12 ISA04)

send_qual wrapstring Sender Interchange Qualifier (X12 ISA05)

recv_qual wrapstring Receiver Interchange Qualifier (X12 ISA07)

i_dtg int Interchange DTG (integer representation of X12
ISA09 and X12 ISA10 fields)

ics_id u_char Interchange Control Standards ID (X12 ISA11)

ic_ver wrapstring Interchange Control Version Number (X12 ISA12)

ack u_char Acknowledgment Requested Indicator (X12
ISA14)

test u_char Test Indicator (X12 ISA15)

i_date_str wrapstring Interchange Date String (X12 ISA09)

i_time_str wrapstring Interchange Time String (X12 ISA10)

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
32 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
InUDFFilename wrapstring Name of incoming UDF from which this message
object was built

section int Section number for this X12 with respect to the
group

tot_sections int Total number of other X12s in the group

section_keeper string Master X12 for the group

section_list string [] List of other MSNs in the group

GS_index int Index of the entry in msg_seg[] that contains this
GS segment

GE_index int Index of the entry in msg_seg that contains this GE
segment

GrpCtrlNum int Group Control Number (X12 GS06)

GSTo wrapstring GS Receiver ID (X12 GS03)

GSFrom wrapstring GS Sender ID (X12 GS02)

fi_code wrapstring Functional Identifier Code (X12 GS01)

dtg int Date Time Group (DTG)

ra_code wrapstring Responsible Agency Code (X12 GS07)

vri_code wrapstring Version/Release/Industry ID (X12 GS08)

st_list flist_x12_st An st_list array is contained within each gs_list and
contains information on one of the ST segments.

date_str wrapstring DTG Date String (X12 GS04)

time_str wrapstring DTG Time String (X12 GS05)

ST_index int Index of entry in msg_seg[] that contains this ST
segment

SE_index int Index of entry in msg_seg[] that contains this SE
segment

TransType int Numeric representation of the X12 transaction ID
(ST01) (e.g., 850, 843, 836)

TransNum wrapstring Transaction Control Number (X12 ST02)

QualDtg int Date/time qualifier for BQR and BQT segments
(X12 BQT03 and BQR03)

PurchaseOrder wrapstring Purchase Order Number for a BEG segment (X12
BEG03)

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
SDD FOR ECPN VERSION 2.2 • JUNE 1999 33

SOFTWARE DESIGN DESCRIPTION FOR ECPN
solicitation wrapstring X12 Solicitation Number (X12 BQT02 and
BQR02)

incoming_udf UDF_vals Contains information about incoming UDF to X12
translation

old_incoming_udf flist_char Original incoming UDF

error_type int Translation error (UDF_OK, TPDB_ERR, etc.)

xlate_rpt wrapstring Report data from translation

incoming_udf BINARYSTRING Incoming UDF (empty for outgoing)

linkages flist_linkages Links to other message objects

msn wrapstring MSN to which the message object is linked

type u_char Type of link (824, 997, etc.)

additional_info wrapstring Descriptive information about the link

oper_annotations flist_annot One entry exists for each annotation made to this
message. Packages the following pieces (indicated
by indention):

annot_text wrapstring Annotation text entered by the ECPN administrator

oper_name wrapstring Name of the ECPN administrator making the
annotation

annot_time long Time that the annotation was made

host_name wrapstring Host from which the annotation was made

err_q_index int Index of this message object in error queue (-1 if
not queued)

actions flist_MSG_
ACTION

List of actions taken with this message object

type ACTION_TYPE Type of action taken. Possible values:
AT_RECEIVE, AT_ROUTE, AT_PROCESS,
AT_REXLATE, AT_REXMIT, AT_OPXMIT
(future development), AT_EQ_DELETE,
AT_MOD_TPDB, AT_X122UDF_XLATE,
AT_X122UDF_XLATE, AT_SYSGEN,
AT_REROUTE, AT_CHANQ_DEL,
AT_UDF_ROUTE, AT_ROUTE_CANCEL,
AT_ERROR, AT_OTHERS

time long Time the status was last set

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
34 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

status ACTION_STATUS Status of action. Possible values:
AS_COMPLETE, AS_FAILURE.

identifier int Numeric value that provides a cross-reference
between the items in the actions list and items in the
routes list. Not applicable for non-route/reroute
actions.

str wrapstring Contains expansion information (e.g., ECPN
administrator name/host, channel name, etc.)

str2 wrapstring Contains additional expansion information

routes flist_MSG_ROUTE List of routes in the message object

chnl_name wrapstring Channel routed to

subaddr flist_wrapstring For a route to an email channel, this array of strings
holds the complete list of addressees as taken from
the “TO:” list in the email channel configuration.
This field is not applicable for a non-email channel
route.

identifier int A unique integer value is assigned for each route in
a message object. This value is also used to build
queue records for sending the message object to an
outgoing communications process or the outgoing
translator, thereby establishing a cross-reference.

reason ROUTE_REASON Reason for route (i.e., GS-TO). Valid values:
RR_NOT_APP, RR_GS_FROM, RR_GS_TO,
RR_ISA_FROM, RR_ISA_TO,
RR_FILE_PATTERN_CASE,
RR_FILE_PATTERN_NOCASE,
RR_ALL_CHAN, RR_SYS_GEN,
RR_RETRANSMIT, RR_MSG_REPORT,
RR_MSG_REPORT_REXMIT,
RR_SYS_GEN_ADMIN

gs_sts flist_GS_ST List of GS_ST records within the route. Each one
represents a file to be transmitted.

old_time long Time that status was last set

gs int GS index (zero-based) of the gs_list portion of the
message object. A value of -1 denotes all GSs in the
message object.

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
SDD FOR ECPN VERSION 2.2 • JUNE 1999 35

SOFTWARE DESIGN DESCRIPTION FOR ECPN
st int ST index (zero-based) of the st_list within the
above indexed gs_list record. A value of -1 denotes
all STs within the gs_list record.

old_subaddr_bm bitmask Bitmask denoting which indices in the route record
subaddressee list are targeted in this particular route
portion

old_filename wrapstring Name (or for email, the message ID) of the
transmitted file

old_status ROUTE_STATUS Status of route (transmitted/pending). Valid values:
RT_QUEUED, RT_XMITTING,
RT_COMPLETE, RT_FAILURE,
RT_CANCELLED, RT_OPDEL

old_transmitter_
pid

int PID of the communication process handling the
transmission

old_ack_997 msn_link Link to the 997 generated from this route

msn wrapstring Message Sequence Number

type u_char Type of ack (e.g., 997, 824)

additional_info wrapstring Descriptive information

route_type ROUTE_TYPE Type of route. Valid values: RTYPE_NORMAL,
RTYPE_ACK997, RTYPE_CC

msn_linkages flist_linkages Links to other message objects

msn wrapstring MSN to which the message object is linked

type u_char Type of link (e.g., 824, 997)

additional_info wrapstring Descriptive information

time long Time that status was last sent

filename wrapstring Name (or for email, the message ID) of the
transmitted file

status ROUTE_STATUS Status of route (transmitted/pending). Valid values:
RT_QUEUED, RT_XMITTING,
RT_COMPLETE, RT_FAILURE,
RT_CANCELLED, RT_OPDEL

transmitter_pid int PID of the communication process handling the
transmission

msg_report msg_rpt Information about a message report object

text flist_char Contents of the report

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
36 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
msgtype wrapstring Report type

channel wrapstring Relevant channel

contents int Bitmask field

datestr wrapstring Date of the report

alerts flist_alerts List of alerts generated

alert_class wrapstring Alert class

name wrapstring Alert name

msg wrapstring Message text

key wrapstring MSN or channel name

time long Time that the alert was generated

channel wrapstring Relevant channel

variables flist_FILENAME_
VAR

Information about the filename variables available
for use

name wrapstring Name by which the variable is referenced

value wrapstring Value associated with the variable

identifier int Route identifier with which the variable is
associated

target_chan wrapstring Used for routing/rerouting message objects

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
SDD FOR ECPN VERSION 2.2 • JUNE 1999 37

SOFTWARE DESIGN DESCRIPTION FOR ECPN
Table 5-2 Message Object err_type/error_expansion Values

Value of err_type CSC Mask List of error_expansion Values

DEC_MASK “General Partition Error”
“Partition Error. Possible incorrect length of 1st seg.”
“Segterm Partition Error”
“Segment Incomplete Partition Error”
“Start of Message Partition Error”
“ISA segment out of order”
“ISA segment parse error”
“IEA segment out of order”
“IEA segment parse error”
“ISA/IEA numbers don’t match”
“Incorrect GS count in IEA segment”
“GS segment out of order”
“GS segment parse error”
“GE segment out of order”
“GE segment parse error”
“GS/GE group cutler numbers don’t match”
“Incorrect ST count in GE segment”
“ST segment out of order”
“ST segment parse error”
“SE segment out of order”
“SE segment parse error”
“ST/SE transaction numbers don’t match”
“SE has incorrect segment count”
“BQT segment out of order”
“BQT segment parse error”
“BQR segment out of order”
“BQR segment parse error”
“BEG segment out of order”
“BEG segment parse error”
“BCO segment out of order”
“BCO segment parse error”
“PO1 segment out of order”
“BIG segment out of order”
“BIG segment parse error”
“Segment out of order”
“Message Incomplete (ISA/GS/ST still active at end of
message)”
“Message ISA count = 0”
“Invalid ST_Segment”
“Invalid DUNS value”
“Bad 838 version number”
38 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
ROUTE_MASK “No Primary Route Available.”
“No Reply Route Available.”
“Source Channel Does Not Exist.”
“Unknown Filename Variable”

XLATE_MASK “Failed TPDB lookup”
“Invalid UDF error”
“Empty Message”
“Source Channel Does Not Exist.”

OUT_COMMS_MASK “Failed SEGTERM conversion.”
“Failed on Addressee List or Content.”
“Cleo ASCII data rejection.”

ACK_MASK “997 Negative Acknowledgment”
“997 Unable to Correlate”

OP_MASK “Operator Delete from Channel Queue”

Table 5-2 Message Object err_type/error_expansion Values (Continued)

Value of err_type CSC Mask List of error_expansion Values
SDD FOR ECPN VERSION 2.2 • JUNE 1999 39

SOFTWARE DESIGN DESCRIPTION FOR ECPN

ecuting

ses that
5.2 Communications

The Communications CSC is responsible for managing connections between ECPN and
remote systems. The ECPN CSCI manages communications using the channel concept. Each
remote site that ECPN connects to is designated as a separate channel. The channel contains
information about connecting to a site, such as communications protocol, message type (X12
or UDF), connection frequency, and communications-specific information (e.g., email address
for an email channel).

The Communications CSC consists of the following SCSCs:

• EditChannels
• Comms
• FTP Sessions
• File Transfer Protocol Daemon (ftpd)
• Electronic Send Electronic Mail (email_meta/email_send)
• Electronic Mail Daemon (emaild)
• Channel Status
• Incoming X12 Queue
• Outgoing Communication Queues
• Channel Database

5.2.1 EditChannels

The EditChannels application provides a GUI for adding, deleting, and modifying
communication channels in the channel database and displaying the current channel state as set
by the ECPN administrator. The channel database (described in Section 5.2.10) defines the
operating characteristics of each communication interface. (EditChannels accesses the channel
database via a socket interface to the RPCServer, as described in Section 5.1.1). The
RPCServer actually performs modifications to the channel database as requested by
EditChannels.

5.2.2 Comms

The comms process is started at system startup and is responsible for scheduling and ex
communications sessions for FTP, ZMODEM, Kermit, and CLEO channels. It keeps an
updated schedule of session times for all active channels and manages the child proces
handle individual sessions.
40 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

number
. Thus,
ule
dule
er each

ll be

are no
a new
iting”
of
ount
d

ms
 (if the

 is

try
 an
n
5.2.2.1 Scheduling Sessions

At startup, the comms process generates a “schedule” of sessions for all active channels
(excluding email channels). Each schedule entry contains the channels database record
and a scheduled start time. The schedule is kept in ascending order, based on start time
the next communication session to start is always the first entry in the schedule. (Sched
entries are added when a channel is activated or a communication session starts. Sche
entries are deleted when a channel is deactivated or a communication session ends.) Aft
schedule modification, the timer indicating when the next session is to start is reset.

To view the schedule, send a SIGUSR2 to the parent comms process. The schedule wi
printed in the comms debug log.

5.2.2.2 Communications Sessions

The comms process uses child processes to execute communication sessions. If there
child processes currently running, or if all child processes are busy executing sessions,
child process is spawned to execute the communication session. Otherwise, the first “wa
child process is instructed to execute the communication session. An unlimited number
children may be spawned. However, if a child process remains inactive for a certain am
time (as defined by the registry entry “comms.ChildCleanupInterval”), it will be terminate
with a SIGTERM signal by the parent comms process.

Upon completion of a communication session, the comms child process notifies the com
parent process via an event queue. The comms parent then schedules the next session
channel is still on) to start at the current time plus channel cycle time (in seconds). If the
scheduled time is outside the communications window for the channel, the next session
scheduled to start at the beginning of the communications window for the following day.

If a communications session fails to connect, then the comms child will keep trying the
connection until the number of retries set for the channel is exhausted. Between each re
attempt, the comms child will wait the specified retry_interval. If all retry attempts fail, then
alert is generated (either “FTP CONNECT” or “DIAL FAILED”). The comms parent is the
notified that the session is complete, and the next session is scheduled.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 41

SOFTWARE DESIGN DESCRIPTION FOR ECPN

e

 in

rom the
 If the

those
will

st of
r

ost)
es all

 or stops
eue

es that

 X12
e placed

ined in

ed
5.2.2.3 Comms Children Database

Comms uses an RPC database, CommsChildren, to communicate between the parent and child
processes. The CommsChildren database contains exactly one entry for each comms child
process. Each entry contains the child’s PID and the channel database record number for th
communication session for which that child is currently executing. If the child is currently
“waiting” (i.e., idle), the channel database record number will be ‘-1’. To view the entries
the CommsChildren database, run “CommsChildrenDB_text” from the command line.

When a child comms process is spawned, it reads the channel database record number f
CommsChildren database to determine the channel for which it is to execute a session.
channel is a ZMODEM, Kermit, or CLEO channel, a serial session is run. If it is an FTP
channel, an FTP session is run.

5.2.2.4 Serial Sessions

Before a serial session is started, the comms process selects an available device from
listed in the KermitDevices or CLEODevices files. If no device is available, the channel
wait until one becomes available. Availability of devices is controlled through the use of
semaphores.

Once a device has been selected, ReadOutChnlQueue() is called iteratively to build a li
files to transmit. Each call to ReadOutChnlQueue() call returns a single file formatted fo
output. For multiple mode channels (e.g., Kermit, ZMODEM), this process consumes (at m
one channel queue record. For batch mode channels (e.g., CLEO), this process consum
records on the queue that match the batch criteria (e.g., source channel cross-reference)
after the size of the file reaches the byte limit set in the channel’s configuration. Each qu
record is processed as follows:

• Using the route identifier from the channel queue record, the process gathers all rout
have a matching identifier and a status of “not complete”.

• For an X12 transmit channel, the routes are used to identify the GSs and STs in the
message that are intended for transmit on the target channel. These GSs and STs ar
into ISA/IEA wrapped messages as follows:

• The ISA/IEA wrappers from the original received X12 are used.

• Field delimiters, separators, and/or sub-element separators are replaced as def
the segment terminator replacement for the channel.

• The ISA05/06 and ISA 07/08 fields are replaced with the values specified in the
channel configuration record.

• If specified in the channel configuration record, the file content is blocked into fix
length records (new line separated).
42 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

d for
imal
y the

he

ted

nel.
d

s

.

itted
in the
ge in the
nel log.

g and

.

ermit
nel’s
load
ing
nals
• For CLEO channels set to transmit ASCII only, the message content is searche
characters that do not map from ASCII to EBCDIC (Extended Binary Coded Dec
Interchange Code) or that cause adverse behavior in transmit stream handling b
3780 protocol. If these characters are found, the associated channel record is
dequeued, and the message object is placed in the error queue.

• For a UDF channel, the file is returned as identified in the channel queue record. If t
channel is a CLEO channel set to ASCII transfer mode, the file is first parsed for
unprintable or non-whitespace characters. If these characters are found, the associa
channel record is dequeued, and the message object is placed in the error queue.

Comms invokes either the kermit program (for Kermit and ZMODEM channels) or the
3780Plus program (for CLEO channels), using the script and initialization file for the chan
The steps performed by comms depend on each channel’s modem script. For Kermit an
ZMODEM channels, comms determines success or failure by processing data written to
STDOUT by the kermit program while it processes the script. For the list of output string
processed from the Kermit and ZMODEM scripts, see Section 5.2.2.5. For CLEO channels, the
exit status of the 3780Plus program determines the success or failure of the file transfer

Once the communications session is complete, comms removes the successfully transm
messages from the channel’s outgoing queue and updates the status of the messages
message log and channel log. If a message fails transmission, comms leaves the messa
outgoing channel queue for the next cycle and does not update the message log or chan

Comms then checks the incoming (InRaw) directory for messages received during the
communications session. If any messages are found, they are logged in the ChannelLo
then placed in the incoming X12 or translation queue, depending on the message type
supported by the channel.

Comms generates alerts for communication problems via the standard API, proc-alert()

5.2.2.5 Kermit

The kermit program is invoked by comms when a communications session for either a K
or ZMODEM channel is started. The functions that kermit performs depend on each chan
script, which should at a minimum, consist of these components: login, password, down
files, upload files, and exit. File download success is determined by receiving the follow
string from STDOUT: “<filename> Successfully.” File upload success is determined by sig
inherent in the Kermit protocol.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 43

SOFTWARE DESIGN DESCRIPTION FOR ECPN
Connection, authentication, file transmit, and file receive actions are performed by the kermit
program, which is driven by a job script. The status of the connection and the status of each
transmitted file is determined by parsing the output of the kermit program while executing the
job script. Table 5-3 details the strings parsed and the actions taken during this parse operation.
The existence of files in the local receive directory after a connection denotes a successful
receive. The files are queued to either the incoming X12 queue or the translation queue,
depending on the message type supported by the channel.

Kermit channels support both batch and multiple file transfer. Filenames are constructed from
variables and characters as follows:

Variables (within braces {}):

• {jul} - Julian Date (001 to 366)
• {hr} - Hour (00 to 23)
• {min} - Minute (00 to 59)
• {sec} - Second (00 to 59)
• {time} - hour and minute (00 to 23) (00 to 59)
• {mon} - Month (01 to 12)
• {day} - Day (01 to 31)

Table 5-3 Kermit Operation String/Action Relationship

String Action

“Successfully” The prior string is assumed to be a successfully sent file,
and all messages contained within are marked as
successfully transmitted and dequeued from the channel.

“send Unsuccessful” The prior string is assumed to be an unsuccessfully sent
file, and all messages contained within are left queued to
the channel queue.

“NO CARRIER” An alarm is set for 60 seconds. If after 60 seconds, the
kermit process is still executing, the job is assumed to be
hung, so it is terminated. All messages contained within
the transmit files that have not been reported as
successful are left queued to the channel.

“line for INPUT” The process status is treated as a dial failure, and all
messages contained within the transmit files are left
queued to the channel.

“Cannot dial phone” The process status is treated as a dial failure, and all
messages contained within the transmit files are left
queued to the channel.

“ABORT” The process status is treated as a dial failure, and all
messages contained within the transmit files are left
queued to the channel.
44 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

e
lid

d,

e

t

• {year} - 4-digit year (e.g., 1997)
• {yr} - 2-digit year (e.g., 97)
• {sxrf} - Channel reference for the message’s source
• {drxf} - Channel reference for the message’s destination
• {c} - Counter number (up to 8 digits)
• {cent} - 2-digit century (e.g., 21)

Note that additional variables may be valid for a specific message type. (For example, th
{saacons-sid} variable is valid if SAACONS is the selected message type.) For a list of va
variables for a particular message type, see the DESCRIPTION box of the TRANSLATION
tab of the edit channel window (described in the Software User’s Guide for Electronic
Commerce Processing Node).

Characters:

Other than variables and the braces that enclose those variables ({}), only alphanumeric
characters and the following symbols may be entered in a file name. (Spaces are not allowed.)

• Hyphen (-)
• Period (.)
• Underscore (_)

 The following fields can be used to configure a Kermit Channel:

Table 5-4 Kermit Channel Fields (AsyncStruct)

Field Name Type Description

device char [DEVICE_LEN] Modem device

recv_packet_length int Size of receive packets, in bytes

send_packet_length int Size of transmit packets, in bytes

baud_rate int Modem baud rate

char_size int 7 or 8 bits

parity enum ParityType Possible Values: None, Even, Od
Mark, Space

window_size int File transaction packet window siz

dial_timeout int Dial timeout in seconds

block int Error checking level

byte-limit int Maximum size per batch file

receive_eop int Character to specify end-of-packe

escape_char int Character to specify escape
character

phone char [MAX_PHONE_LEN] Phone number to dial
SDD FOR ECPN VERSION 2.2 • JUNE 1999 45

SOFTWARE DESIGN DESCRIPTION FOR ECPN

uld at
 and

OUT.
e

ution.
nsmit
e. Any

 file
 a
g X12

nel.
5.2.2.6 ZMODEM

ZMODEM is invoked within a Kermit script by comms. Unlike Kermit, ZMODEM performs
the upload and download of files using the rz and sz programs respectively. All other functions
are the same as those for a Kermit channel (described in Section 5.2.2.5).

5.2.2.7 CLEO

CLEO (3780Plus) is invoked by comms when a communications session for a CLEO channel
is started. The functions that CLEO performs depend on each channel’s script, which sho
a minimum, consist of these components: login, password, download files, upload files,
exit. The status of CLEO transmissions is based on the return codes CLEO sends to STD
If no error code is returned and the session ends normally, transmitted messages may b
assumed successful.

The status of CLEO file transmission is a function of the exit status of the 3780Plus exec
An exit status of zero denotes success, and all messages contained within the single tra
file are marked as successfully transmitted and are then dequeued from the channel queu
other exit status indicates failure, and all messages contained within the single transmit
remain queued to the channel. The existence of a file in the local receive directory after
connection denotes a successful receive. The received file is queued to either the incomin
queue or the translation queue, depending on the message type supported by the chan

outfile char [MAX_OUTFILE_LEN] Name of file to transmit

login char [MAX_LOGIN_LEN] Login ID to use

passwd char [MAX_PASSWD_LEN] Password to use

indir char [MAX_INDIR_LEN] Incoming directory

outdir char [MAX_OUT_DIR_LEN] Outgoing directory

Table 5-4 Kermit Channel Fields (AsyncStruct) (Continued)

Field Name Type Description
46 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

 5

5

5

5

CLEO channels support only batch file transfer with a filename assigned in the edit channel
window.

5.2.3 FTP Sessions

Scheduled FTP sessions exist for outgoing FTP communications only. (Note that the file
transfer protocol daemon, ftpd, discussed in Section 5.2.4, manages the receipt of FTP files that
are pushed to ECPN.) FTP sessions are executed by a comms child process each time a
scheduled session is started for an FTP channel. FTP sessions call ReadOutChnlQueue()
iteratively to build and transmit files.

Each call to ReadOutChnlQueue() returns a single file formatted for output. Multiple-mode file
creation consumes (at most) one channel queue record. Batch mode file creation consumes all
records on the queue that match the batch criteria (e.g., source channel cross-reference) or stops
after the size of the created file reaches the byte limit for the channel. Each queue record is
processed as follows:

Table 5-5 CLEO Channel Fields (CleoStruct)

Field Name Type Description

device char [DEVICE_
LEN]

Modem device for the channel

repeat_limit int See 3780Plus User’s Guide, Chapter 5

rexmit_limit int See 3780Plus User’s Guide, Chapter 5

wait_limit int See 3780Plus User’s Guide, Chapter 5

delay_limit int See 3780Plus User’s Guide, Chapter 5

terminal_type enum TerminalType See 3780Plus User’s Guide, Chapter

compress_space int See 3780Plus User’s Guide, Chapter

xmit_blocking_factor int See 3780Plus User’s Guide, Chapter 5

modem_type int See 3780Plus User’s Guide, Chapter 5

suppress_new_line int See 3780Plus User’s Guide, Chapter

protocol enum CleoProtocol See 3780Plus User’s Guide, Chapter

byte_limit int See 3780Plus User’s Guide, Chapter 5

xmit_record_size int See 3780Plus User’s Guide, Chapter 5

bid_limit int See 3780Plus User’s Guide, Chapter 5

recv_limit int See 3780Plus User’s Guide, Chapter 5
SDD FOR ECPN VERSION 2.2 • JUNE 1999 47

SOFTWARE DESIGN DESCRIPTION FOR ECPN

es that

 X12
e placed

ined in

ed

h only,
n. At
ction

e the

ined in
the
ge in the
nel log.
ueue,

e>).

nd
imes
• Using the route identifier from the channel queue record, the process gathers all rout
have a matching identifier and a status of “not complete”.

• For an X12 transmit channel, the routes are used to identify the GSs and STs in the
message that are intended for transmit on the target channel. These GSs and STs ar
into ISA/IEA wrapped messages as follows:

• The ISA/IEA wrappers from the original received X12 are used.

• Field delimiters, separators, and/or sub-element separators are replaced as def
the segment terminator replacement for the channel.

• The ISA05/06 and ISA07/08 fields are replaced with the values specified in the
channel configuration record.

• If specified in the channel configuration record, the file content is blocked into fix
length records (new line separated).

• For a UDF channel, the file is returned as identified in the channel queue record.

If there are no messages in the channel’s outgoing queue and the channel is set to pus
comms does not initiate a connection but will wait until the next session and check agai
that time, if there are messages queued for the channel, comms initiates an FTP conne
using the site-specific information contained in the channel database (described in
Section 5.2.10). If set to push/pull, comms will first upload (pull) remote files destined for
ECPN. Upon successful retrieval and local queue storage of each file, comms will remov
file from the remote system. Comms will then download (push) any files destined for the
remote system.

After each successful file send, comms deletes the successfully sent message(s) conta
the file from the channel’s outgoing queue and updates the status of the message(s) in
message log and channel log. If a message fails transmission, comms leaves the messa
outgoing channel queue for the next cycle and does not update the message log or chan
Uploaded files are placed in either the incoming X12 queue or the incoming translation q
depending on the channel’s message type.

Comms performs the following steps during each communications session:

1. Connects to the remote site’s IP address using the login provided (USER <usernam

2. Provides password and/or account, in any order, as prompted (PASS <password> a
ACCT <account>). Note that comms will issue the password and account up to five t
as prompted.

3. Sets the file transfer type as ASCII or binary.
48 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

r

in

 on the
s the
e name.

er is

om
4. Issues a change to the working directory, if necessary (CWD).

When pulling files on an FTP channel, comms performs the following functions:

5. Obtains a list of files in the pull directory, using full path (NLST) . If local globbing is set,
this action returns all files. If remote globbing is set, only those files matching the specific
remote mask are returned.

6. Processes the list, filtering out listing headers and local and parent directory tokens, and
then builds the full path/name of each file to pull.

7. Receives the files from the remote system, using the full path (RETR).

8. After the file is received, confirmed, and locally stored and queued, deletes the file on the
remote system (DELE). If “delete from pull dir” is configured, the pull directory/containe
is also removed from the remote system.

When pushing files on an FTP channel, comms performs the following functions:

9. Sends any site commands entered in the channel configuration window (described
Section 5.2.1).

10. If the trigger mode is TRG_LOCK, transfers the trigger lock file.

11. Transfers the data file as the generated filename using STOR or APPE, depending
append or push setting. If the trigger mode is TRG_RENAME, transfers the data file a
generated trigger name and then renames the sent data file to the generated data fil

12. If the trigger mode is TRG_CREATE, transfers the trigger file after the data file transf
complete.

Once FTP file transfer is complete, comms:

13. Logs out of the remote system (QUIT).

FTP sessions support both multiple and batch file transfer. Filenames are constructed fr
variables and characters as follows:

Variables (within braces {}):

• {jul} - Julian Date (001 to 366)
• {hr} - Hour (00 to 23)
• {min} - Minute (00 to 59)
• {sec} - Second (00 to 59)
• {time} - hour and minute (00 to 23) (00 to 59)
• {mon} - Month (01 to 12)
• {day} - Day (01 to 31)
• {year} - 4-digit year (e.g., 1997)
SDD FOR ECPN VERSION 2.2 • JUNE 1999 49

SOFTWARE DESIGN DESCRIPTION FOR ECPN

he
lid

eue for
e
ccessful
• {yr} - 2-digit year (e.g., 97)
• {sxrf} - Channel reference for the message’s source
• {drxf} - Channel reference for the message’s destination
• {c} - Counter number (up to 8 digits)
• {cent} - 2-digit century (e.g., 21)

Note that additional variables may be valid for a specific message type. (For example, t
{saacons-sid} variable is valid if SAACONS is the selected message type.) For a list of va
variables for a particular message type, see the DESCRIPTION box of the TRANSLATION
tab of the edit channel window (described in the Software User’s Guide for Electronic
Commerce Processing Node).

Characters:

Other than variables and the braces that enclose those variables ({}), only alphanumeric
characters and the following symbols may be entered in a file name. (Spaces are not allowed.)

• Hyphen (-)
• Period (.)
• Underscore (_)

If a message fails transmission, comms leaves the message in the outgoing channel qu
the next cycle. If a message is sent successfully, comms removes the message from th
outgoing channel queue and updates both the message log and channel log to reflect su
transmission.

Table 5-6 FTP Channel Fields (FTPStruct)

Field Name Type Description

hostname char [MAX_HOSTNAME_LEN] Local host name for channel

login_id char [MAX_LOGIN_LEN] Remote login ID

password char [MAX_PASSWD_LEN] Remote password

workdir char [MAX_DIR_LEN] (Optional) Directory to cd to
for pushing/pulling files

in_dir char [MAX_DIR_LEN] Remote download directory

out_dir char [MAX_DIR_LEN] Remote upload directory

filemask char[MAX_OUTFILE_LEN] String to be sent to remote
system (if remote globbing
set), or used locally (if local
globbing set to filter selection
of files to receive)

trigger_convention enum TriggerStyle None, Rename, Lock, or
Create

trigdir char [MAX_DIR_LEN] Remote trigger directory/name
50 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
To generate alerts for communication problems, comms connects to the alert daemon. (For a
complete list of alerts, see Appendix A.)

site_cmd char [MAX_SITE_CMD_LEN] String to be sent as site
command before each file
transfer to set values such as
record length

glob_option int Whether to do file name
expansion, and if so, whether
to do it locally or remotely

account char [MAX_ACCOUNT_LEN] Account information

appe_on_push int Use append command vice
store command on transfer

del_pulldir int Whether to delete the pull
directory/container after pull

byte_limit int Up to MaxInt. Max size of a
batch file to be sent

Table 5-6 FTP Channel Fields (FTPStruct) (Continued)

Field Name Type Description
SDD FOR ECPN VERSION 2.2 • JUNE 1999 51

SOFTWARE DESIGN DESCRIPTION FOR ECPN

ny
Raw/
s the
ge type
.

send.
a”
s the

domains.
inate the

ail
lowed by
net,
ree
e list
ree
5.2.4 File Transfer Protocol Daemon (ftpd)

The ftpd processes messages that are pushed to ECPN. No remote system is allowed to pull data
from ECPN. The daemon is responsible for managing the connection request by the remote
system and restricting the allowable functions to only those necessary to transfer files to ECPN.
The ftpd establishes a “jail,” so that a remote user may not issue a change directory to a
directory above the login directory. (The login directory is /h/data/global/EC/Messages/In
<Channel Name>.) Once the remote site has finished uploading the files, the ftpd passe
messages to the incoming X12 or translation queue, depending on the channel’s messa
setting. To handle simultaneous FTP requests, the daemon can fork multiple processes

5.2.5 Email Send Electronic Mail (email_meta/email_send)

The ability to transmit files via email is handled by two processes: email_meta and email_
The Router places all outgoing message objects for all email channels on a single “met
queue. The email_meta process consumes the single (meta) email queue and generate
email domain queues and the email stats database, based on the message destination
These email_send processes use the email_stats database and record locking to coord
consumption of the different domain queues.

The addressee list in an email channel configuration can be a list of several different em
addresses, separated by commas. Each address has a username, and an @ symbol, fol
a domain name. The example addressee list—johndoe@acme.com, janedoe@widgets.
ecpn@tools.acme.com, joeshmo@widgets.net—actually contains four addresses and th
domains (acme.com, tools.acme.com, and widgets.net). With this hypothetical addresse
for channel EMAIL1, each message sent out channel EMAIL1 will actually be sent as th
separate files, each to a different domain. (The file sent to widgets.net will have two
addressees).
52 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

ucts a

It is the responsibility of the email_meta process to take a message bound for the hypothetical
EMAIL1 channel and vector it to the three different domain queues for processing by the
email_send processes. The email_meta process also creates and manages the email_stats
database. This database serves the dual purpose of feeding the outgoing email queue viewer
application (described in Section 5.4.10), as well as the email_send processes. The email_send
processes use record-level locking on the database entries to coordinate consumption among
themselves. For a description of the email stats database, see Table 5-7.

The email_send processes are responsible for consuming the email domain queues by
packaging and sending the queued messages in email files using the SMTP protocol. MIME is
an optional field in the EDIT EMAIL window. If MIME is selected, each message is sent as a
separate, base-64 MIME encoded attachment. Sites that wish to send and receive interchanges
as MIME attachments must notify ECPN in advance. For MIME messages, the content-type
will be application/edi-x12. With each attempt to process a queue entry, the email_send process
also updates the following email stats database fields: Last TOT, Last Attempt, num_in_queue,
and state.

The correlation between the email channels configuration records and email transmit
processing, as well as the email queueing logic is described below:

• The email_meta process dequeues a record from the email meta queue, and constr
list of domains to which the message must be sent using these steps:

• Retrieves the route using the route id from the email queue record.

Table 5-7 Email Stats DB Fields (EMAIL_STATS)

Field Name Type Description

domain char [DB_MAXEMAILLEN] Domain name, which is
everything after the @ symbol in
an email address

num_in_queue int Number of records in the
corresponding domain queue

last_tot unsigned long Last successful transmit for the
domain

last_attempt unsigned long Last transmit attempt for the
domain

state int Busy, idle

on_off int Whether domain is on or off

cycle_thresh int Number of failures before alerting

thresh_enabled int Whether connection failure alert is
on or off
SDD FOR ECPN VERSION 2.2 • JUNE 1999 53

SOFTWARE DESIGN DESCRIPTION FOR ECPN

stored

es.

t is not

omain
only,

Ts are

efined

he

.

s the
er to

st of

 list,
e.
• Retrieves the channel record associated with the route using the channel name
in the route.

• Constructs the domain list from the channel record’s “send to” field.

• Adds the route domain to the domain list if it is not already listed.

• The email_meta process enqueues the record to each of the targeted domain queu

• The email_send process loops, searching the email stats database for a domain tha
locked and has not been attempted in the last “DOWN_HOST_RETRY” seconds.

• The email_send process calls ReadOutChnlQueue() to dequeue a record from the d
queue and build a file for transmit. (Note that email channels send in multiple mode
so batch mode is not permitted.) ReadOutChnlQueue() then performs the following
processing:

• For an X12 channel, the routes are used to identify the GSs and STs in the X12
message that are intended for transmit on the target domain. These GSs and S
placed into ISA/IEA wrapped messages as follows:

• The ISA/IEA wrappers from the original received X12 are used.

• Field delimiters, separators, and/or sub-element separators are replaced as d
in the segment terminator replacement for the channel.

• The ISA05/06 and ISA07/08 fields are replaced with the values specified in t
channel configuration record.

• If specified in the channel configuration record, the file content is blocked into
fixed length records (new line separated).

• For a UDF channel, the file is returned as identified in the channel queue record

• The route is passed back from ReadOutChnlQueue(). The email_send process use
channel name in the route to access the channel configuration and determine wheth
MIME encode the message.

• The email_send process(es) query the host denoted by the domain name to get a li
SMTP servers for the domain.

• The email_send process makes an SMTP connection with an SMTP server from the
negotiates the from/to addresses, and then sends all of the data in the domain queu
54 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

ithin
e. Note
 For
 error,

e
s are
either
s a
te

ansfer

ion

ll
ed and

e

e
• The email_send process calls UpdateOutChnlQueue() to update the route’s status w
the sent message object and to delete the associated record from the domain queu
that for data send errors, the records are left on the queue for subsequent attempts.
addressee or SMTP server negotiation errors, the message object is marked with an
sent to the error queue, and dequeued from the domain queue.

5.2.6 Electronic Mail Daemon (emaild)

The emaild SCSC is responsible for processing messages received via SMTP email. Th
emaild process checks for incoming messages in the ecedi mailbox. Received message
recorded in the channel logs, stripped of addressing header information, and passed to
the incoming X12 queue or incoming translation queue for processing. If emaild receive
message with a MIME attachment, it decodes each attachment and treats it as a separa
message. Emaild can decode MIME attachments that use one of the following content tr
encodings:

• 7 bit
• 8 bit
• binary
• quoted-printable
• base-64

The emaild process searches the “From” address lists in each of the channel configurat
records (described in Table 5-8) to attribute a received email message to an established
channel. When a message is received and no active channel is found with a partial or fu
matching from address, the message is placed into the RejectedEmail box. It can be view
reinjected using the RejectedEmail application (described in Section 5.4.12).

Table 5-8 Email Channel Fields (EmailStruct)

Field Name Type Description

mime_capable int Flag that denotes whether a channel sends
messages as MIME attachments

send_to_addr char
[MAX_ADDR_
LEN]

List of addresses to which messages routed to th
channel should be sent. Note that this could be a
list that contains multiple domains.

recv_from_domain char
[MAX_ADDR_
LEN]

List of addresses or partial addresses used by th
emaild process (described in Section 5.2.6) to
attribute received email to a specific channel
SDD FOR ECPN VERSION 2.2 • JUNE 1999 55

SOFTWARE DESIGN DESCRIPTION FOR ECPN

hese
5.2.7 Channel Status

The Channel Status application (ChanStats) provides a static view of the communication
channels configured in the channel database (described in Section 5.2.10). The last time of
receipt, last time of transmit, current outgoing message backlog, and current channel status are
provided for each channel in sortable columns.

5.2.8 Incoming X12 Queue

The incoming X12 queue contains a record for each file to be processed by the Router
(described in Section 5.3). Once the incoming file is processed by the Router, the record is
removed from the queue. This queue is populated by the incoming communication channels
that are designated as X12 channels. In addition, this queue is populated by the incoming UDF
to X12 Translator and the error queue, message log, and channel log applications. The queue
has no fixed capacity and is limited only by available disk space.

Table 5-9 Channel Status Database (CHAN_STAT_REC)

Field Name Type Description

status enum
IfaceStatType

Status of the channel (e.g., DOWN, IDLE, BUSY)

tor long Last time of receipt

tot long Last time of transmit

backlog int Number of messages in an outgoing channel’s queue

db_rec int Database record number. This applies to both the
channels database and the chanstat database, since t
two databases must always match.
56 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
The Incoming X12 Queue Viewer (described in Section 5.4.4) provides a text-based interface
for displaying the current content of the queue. The content of the incoming X12 queue is
described in Table 5-10.

Table 5-10 Incoming X12 Queue Fields (IN_X12_FILE_REC)

Field Name Type Description

IN_COMMS_REC Variant of the
union

Normal X12 received file processing
record. Contains the following pieces
(indicated by indention):

x12_filename SHORT_FILE_
NAME

Local file containing the received X12

pull_filename SHORT_FILE_
NAME

Name of the file on the remote system when
it was pulled

in_chan_name CHAN_NAME Name of the incoming channel

TOR u_long Time the message was received

IN_UDF2X12_REC Variant of the
union

Files received on a UDF channel. Contains
the following pieces (indicated by
indention):

genx12_and_824 UDF2X12_REC Structure for the UDF to X12 Translator.
(See Table 5-11.)

pull_filename SHORT_FILE_
NAME

Name of the file on the remote system when
it was pulled

in_chan_name CHAN_NAME Name of the incoming channel

TOR u_long Time of receipt

UDF2X12_REXLATE_
REC

Variant of the
union

Files that need to go back through the
Translator. Placed in the IN_X12_FILE_Q
by the RPCServer in response to a
REXLATE action taken by the user in the
error log or message log. Contains the
following pieces (indicated by indention):

msn MSN_NAME MSN being reprocessed

genx12_and_824 UDF2X12_REC Structure from the UDF to X12 Translator

X122UDF_REC Variant of the
union

Placed in the IN_X12_FILE_Q by the X12
to UDF Translator. It represents the
generated data for a message being routed
out a UDF channel. Contains the following
pieces (indicated by indention):

 msn MSN_NAME MSN being translated

 identifier int Identifier for the routes in parent_msn
SDD FOR ECPN VERSION 2.2 • JUNE 1999 57

SOFTWARE DESIGN DESCRIPTION FOR ECPN
 ack_filename SHORT_FILE_
NAME

File generated by the X12 to UDF
Translator

 xltr_error_type short Error code from outgoing translation.
TPDB_ERR - Problem finding the TPDB
information
X12_ERR - Invalid or corrupt X12

 out_chan_name CHAN_NAME Outgoing channel name passed in by the
Translator

REROUTE_REC Variant of the
union

Placed in the IN_X12_FILE_Q by the
RPCServer in response to a REROUTE
action taken by the user in the error log or
message log. Contains the following pieces
(indicated by indention):

msn MSN_NAME MSN being reprocessed

TRANSMIT_REC Variant of the
union

Not currently implemented

RETRANSMIT_REC Variant of the
union

Placed in the IN_X12_FILE_Q by the
RPCServer in response to a RETRANSMIT
action taken by the user in the outgoing
channel log application. Contains the
following pieces (indicated by indention):

out_chan_name CHAN_NAME Name of the channel on which to retransmit

mod_name MOD_NAME Name of the ECPN administrator selecting
RETRANSMIT from the channel log
application. This is used to add an audit
event to the message object.

mod_host MOD_HOST Host from which RETRANSMIT was
selected on the channel log application.
This is used to add an audit event to the
message object.

index int Index to the channel log

date_str DATE_STR Date of the channel log

MSG_REPORT_REC Variant of the
union

Placed on the IN_X12_FILE_Q by the
Message Reporter in response to a crontab
invocation to generate message reports

contents u_int Contents indicator

chan_name CHAN_NAME Channel for the report

Table 5-10 Incoming X12 Queue Fields (IN_X12_FILE_REC) (Continued)

Field Name Type Description
58 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
Table 5-11 UDF to X12 Translator Structure (UDF2X12_REC)

log_date DATE_STR Log date for the report

IN_SPS_EDA_REC Variant of the
union

Placed in the IN_X12_FILE_Q by comms
channels of message type SPS-EDA

ps SHORT_FILE_
NAME

Name of the incoming postscript file

ps_incoming_name SHORT_FILE_
NAME

Name of the postscript file as sent by the
remote system

ps_TOR u_long Time of receipt for the postscript file

idx SHORT_FILE_
NAME

Name of the incoming index file

idx-incoming_name SHORT_FILE_
NAME

Name of the index file as sent by the remote
system

idx_TOR u_long Time or receipt for the index file

chan_name CHAN_NAME Name of the channel by which the file was
received

Field Name Type Description

sectinfo_filename SHORT_FILE_
NAME

File containing section info

udf_filename SHORT_FILE_
NAME

File containing the UDF

x12_filename SHORT_FILE_
NAME

Local file containing an X12 generated by
the UDF to X12 Translator

gen824_filename SHORT_FILE_
NAME

File generated by the Translator containing
an X12 824 to be sent back to the sender

xltr_error_type short Status of the translation:
TPDB_ERR - Problem finding the TPDB
information
UDF_ERR - Invalid or corrupt UDF

errfile SHORT_FILE_
NAME

File generated by the incoming Translator
which gives debug information concerning
the translation

TOX u_long Time that the UDF to X12 Translator
translated the file

Table 5-10 Incoming X12 Queue Fields (IN_X12_FILE_REC) (Continued)

Field Name Type Description
SDD FOR ECPN VERSION 2.2 • JUNE 1999 59

SOFTWARE DESIGN DESCRIPTION FOR ECPN

mined
 by the

2 to a

n

entry
oing

5.2.9 Outgoing Communication Queues

An outgoing communication queue exists for each channel configured in the channel database
(described in Section 5.2.10), except for email channels. For email channels, there is one large
meta queue and various domain queues (as described in Section 5.2.5). The contents of an
outgoing communication queue is described in Table 5-12. Currently, only a single precedence
is used for all message traffic.

Entries to the outgoing communication queues are appended by the following means:

• The Router (described in Section 5.3.1) appends a message to the outgoing
communication queues after it has parsed and decoded the message and deter
which (if any) channels to route the message to. Because all message appended
Router are in X12 format, the UDF Filename field is left empty.

• The Translator (described in Section 5.5.4) appends messages to the outgoing
communication queues after it has successfully converted a message from an X1
UDF. The UDF Filename field is populated with the newly created UDF file.

Entries are removed from the outgoing communications queue only after they have bee
successfully transmitted. Messages that fail transmission will be left in the queue for
subsequent channel cycles. Note that for single ST-based channels (1 ISA/GS/ST), an
will remain in the outgoing communications queue until all of the STs created by the outg
comms channel have been transmitted. The EC message object will contain a record of
untransmitted STs to ensure that duplicate STs are not transmitted out a channel.

These queues have no fixed capacity and are limited only by available disk space.

Table 5-12 Outgoing Communication Queue Fields (OUT_CHAN_REC)

Field Name Type Description

msn_name MSN_NAME (format: NNNNNNNN/YYYYMDD)

out_udf_filename SHORT_FILE_NAME (For UDF channels only) UDF file to
transmit

identifier int Route identifier designated for the
destination channel
60 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
5.2.10 Channel Database

The channel database stores information specific to each communication channel entry. It is
populated by user entry through the EditChannels application (described in Section 5.2.1) and
is used to control core processing such as routing, translation, incoming communications, and
outgoing communications. For a complete description of the channel database record, see
Table 5-13. Each database record also contains interface-specific information. For a listing of
these protocol-specific fields, see Table 5-4 (Kermit), Table 5-5 (CLEO), Table 5-6 (FTP), and
Table 5-8 (email).

Table 5-13 Channel Database Fields

Field Name Type Description

chname char [CHNAME_LEN] Channel name

machine char [MAXHOSTNAMELEN] Local host for channel

intrfc char [INTERFACE_LEN] Possible values: FTP, Email,
Kermit, ZMODEM, CLEO

message_type char [MESSAGE_TYPE_LEN] Possible values: X12ISA,
SAACONS UDF, SPS UDF

node_type enum NodeType Possible values: GATEWAY,
VAN, NEP, AIS

data_type enum Data Type Possible values: Binary, ASCII

state enum ChannelState Set to ON or OFF by user action
through the EditChannels
application

chkGS02.enabled int Indicator for whether to validate the
GS02 field route

editor char [EDITOR_LEN] Name of executable invoked to edit
the channel. Possible values:
CleoConfig, FileConfig,
EditKermit, EmailEdit.

recv int Channel capable of receiving

xmit int Channel capable of transmitting

transfer_style enum XferStyle Possible values: Batch, Multiple

hdr_trailor int Indicates whether to add headers
and trailers

singleST int On or off for single ST transfer

isa_sender_id_qualifier char [ID_QUALIFIER_LEN] ISA05 replacement value

isa_sender_id char [ISA_ID_LEN] ISA06 replacement value

isa_recv_id_qualifier char [ID_QUALIFIER_LEN] ISA07 replacement value
SDD FOR ECPN VERSION 2.2 • JUNE 1999 61

SOFTWARE DESIGN DESCRIPTION FOR ECPN
isa_recv_id char [ISA_ID_LEN] ISA08 replacement value

conv struct SegTermConv

do_conv int Whether outgoing conversion is
enabled

segterm unsigned int [2] Two-byte segment terminator

elemsep unsigned int Element separator

subelemsep unsigned int Subelement separator

collision detection unsigned int Whether to put a message in the
error queue if a collision is detected

admin struct AdminInfo

adminpath char [ADMIN_MAX_PATH_
LEN]

Email address or path to push
admin files to

adminfname char [ADMIN_MAX_PATH_
LEN]

File name to transmit as

record_len int Maximum length of a file sent to the
remote system

xref char [XREF_LEN] Channel cross-reference string

remote_os int Operating system (OS) that remote
system is running

remote_os_str char [REMOS_STR_MAX] OS as entered by the ECPN
administrator

Interface specific
information

union For a listing of these protocol-
specific fields, see Table 5-4
(Kermit), Table 5-5 (CLEO),
Table 5-6 (FTP), and Table 5-8
(email).

begin_win int Beginning of connection window
(in seconds past 00:00)

end_win int End of connection window (in
seconds past 00:00)

days int [7] Array of days on which to connect
(0=SUN, 1=MON, . . . 6=SAT)

Table 5-13 Channel Database Fields (Continued)

Field Name Type Description
62 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
cycle int Cycle length (in seconds)

retry_interval int Indicates how often to retry a failed
connection

num_retries int Indicates how many times to retry a
failed connection before quitting

Table 5-13 Channel Database Fields (Continued)

Field Name Type Description
SDD FOR ECPN VERSION 2.2 • JUNE 1999 63

SOFTWARE DESIGN DESCRIPTION

ed by

nto
ethods

ods

e to a
DF

e
5.3 X12 Message Processing

The X12 Message Processing CSC applies to those SCSCs responsible for parsing and routing
X12 messages. This CSC consists of the following SCSCs:

• Regular Received X12 Handling
• Translated UDF to X12 Handling
• UDF to X12 Retranslate
• System Generated File Handling
• Reroute Handling
• Retransmit Handling
• Message Report Handling
• SPS-EDA Handling
• Parsing
• Route Lookup
• Queueing

The router process searches the incoming X12 queue for the next available
IN_X12_FILE_REC record. This record can represent one of several functions, as defin
the variant record shown in Table 5-10. The format of the IN_X12_FILE_REC is also
described in Table 5-10.

The following sections detail the handling of each variant of the IN_X12_FILE_REC.

5.3.1 Regular Received X12 Handling

This SCSC handles X12 messages received on an X12 channel. The file is partitioned i
messages, and each message is parsed, routed, and queued in accordance with the m
described in Section 5.3.9, 5.3.10, and 5.3.11.

5.3.2 Translated UDF to X12 Handling

This SCSC handles records generated from the UDF to X12 Translator (described in
Section 5.5.1). The message is parsed, routed, and queued in accordance with the meth
described in Section 5.3.9, 5.3.10, and 5.3.11.

5.3.3 UDF to X12 Retranslate

This SCSC handles records placed in the IN_X12_FILE_Q by the RPCServer in respons
RETRANSLATE action taken by the user in the error log or message log. The original U
content is extracted from the message object, and a record is queued to the UDF to X12
Translator (described in Section 5.5.1). This action results in the creation of a new messag
object for the retranslated message.
64 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

send

t to
 of 997

e to a
ed in
 only
 uses the
d in

e to a
d in
e
 the
hese
es into

orter.
essage
ny
n tab
5.3.4 System Generated File Handling

This SCSC handles the system-generated X12 messages that result from translation (described
in Section 5.5.1 and 5.5.4). Incoming translation may generate an 824 acknowledgment for
translated messages. If so, the 824_997_filename field of the current IN_X12_FILE_REC
record is populated with the filename containing the 824.

Using the IN_X12_FILE_REC’s incoming channel field, the router looks up the channel
configuration to check the acknowledgment configuration. If the channel is configured to
all acknowledgments, the 824 text is parsed through the Parse SCSC (described in
Section 5.3.9). If the channel is configured to send acknowledgments only on failure and the
IN_X12_FILE_REC’s xltr_error_type field is set for error, the router will pass the 824 tex
the Parse SCSC. Outgoing translation generates a 997 X12 message. For a description
routing, see the Routing SCSC (described in Section 5.3.10).

5.3.5 Reroute Handling

This SCSC handles records placed in the IN_X12_FILE_Q by the RPCServer in respons
REROUTE action taken by the user in the error log or message log application (describ
Section 5.4.5 and 5.4.6). Routes are not redundantly assigned. As a result, a reroute action
assigns and queues routes that are new since the last route attempt. The reroute action
MSN to access the message object to determine the routes that are and are not satisfie
accordance with the route database.

5.3.6 Retransmit Handling

This SCSC handles records placed in the IN_X12_FILE_Q by the RPCServer in respons
RETRANSMIT action taken by the user in the outgoing channel log application (describe
Section 5.4.3). RETRANSMIT of a file from the channel log application results in the sam
content (MSN/GS/ST message portions) of the original file being flagged for routing out
same channel. The normal communication logic for queue/route management handles t
added routes, so changes in channel configuration affect the repackaging of the messag
files.

5.3.7 Message Report Handling

This SCSC handles records (MsgReports) placed in the IN_X12_FILE_Q by the MsgRep
The MsgReporter, run as a regularly scheduled cron job, is responsible for generating m
traffic reports for individual communication channels. Message reports are logged like a
other message, and routing is determined based on the communication channel’s admi
configuration. The message route database is bypassed completely.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 65

SOFTWARE DESIGN DESCRIPTION

script

es and
e

 824s and

omply
ecks
5.3.8 SPS-EDA Handling

This SCSC handles records placed in the IN_X12_FILE_Q by the incoming communication
channels of message type SPS-EDA. Files are expected to come in pairs, including an index
file and a postscript file. The two files are treated as a sectioned message, with the postscript
file being set as a section keeper. Only the postscript file is routed according to Section 5.3.10.
Upon transmission, the other section—the index file—is gathered and sent with the post
file.

5.3.9 Parsing

A file is parsed into one or more message objects by the parsing SCSC. Parsing identifi
validates relevant information in an X12 message and stores this information in messag
objects on a per ISA basis.

Precedence is assigned based on the message type and stored with the message object.
997s receive ACK precedence, while everything else gets ROUTINE precedence.

5.3.9.1 Element Validation

Some X12 segments are validated by checking to insure the elements in the segment c
with the X12 3040 standard. The Router validates elements by performing the following ch
on each element:

• Length (minimum and maximum)
• Embedded blanks allowed
• Mandatory or optional
• Field type - valid types in accordance with X12 are:

• ID
• String
• Date
• Time
• Numeric
• Decimal Number

5.3.9.2 Element Storage

The following elements are parsed and stored in a message object on a per ISA basis.

• BEG
• 01 Purpose
• 02 Type Code
• 03 Purchase Order Number
66 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION

Each of
 also

aced
essage

ased on
ting
• BIG
• 01 Invoice Date
• 02 Invoice Number
• 04 Purchase Order Number

• BQT
• 01 Purpose
• 02 Ref Num
• 03 RFQ Date
• 04 Date/Time Qual
• 05 Date

• BQR
• 01 Purpose
• 02 Ref Num
• 03 RFQ Date
• 04 Date/Time Qual
• 05 Date

• BCO
• 01 Purpose
• 02 Ref Num
• 03 RFQ Date

• GS - All Fields (GS01 - GS09)
• GE - All Fields (GS01 - GS08)
• IEA - All Fields (IEA01 -IEA02)
• ISA - All Fields (ISA01 - ISA18)
• SE - All Fields (SE01 - SE02)
• ST - All Fields (ST01 - ST02)

5.3.9.3 Logging and Message Object Storage

Parsing errors for each message object are identified and stored in the message object.
the messages is also logged in the message log. If parsing errors exist, the message is
appended to the error queue; otherwise, the message has passed parsing.

If the parent_msn field of the IN_X12_FILE_REC is populated, then the parent_msn is pl
in the newly created message object(s) as a linkage. The MSN(s) for the newly created m
object(s) is also stored in the parent message object.

5.3.10 Route Lookup

Routes for all messages except 824s, 997s, and retransmitted records are determined b
the message route database. This database establishes a link between two circuits, rou
messages from one to the other based on the following criteria:
SDD FOR ECPN VERSION 2.2 • JUNE 1999 67

SOFTWARE DESIGN DESCRIPTION

 this
hole

inal
ch as

s of a

annel

te
 not

urce
routed.

ssage

g
ing can

ss
• ISA/GS To - To specify that the system route only messages addressed to a certain site
(using the value that appears in the ISA08 or GS03 field of the message). Note that
function can result in portions (GSs) of a message assigned to a route without the w
message being assigned to a route.

• VAN/Filename Pattern - To specify that the system route only messages whose orig
file name matches the specified file pattern. A file pattern may contain wild cards, su
“*”, for matching purposes.

• GS01 - To specify that the system route to a channel only those incoming message
certain X12 transaction type.

• All-Channel - To specify that the system route all of the messages from the source ch
to the specified destination channel.

A list of channels is provided for source and destination channel selection. Duplicate rou
entries, as well as individual entries where the source and destination are the same, are
allowed.

5.3.10.1 824 Routing

A system-generated 824 is a by-product of translating a UDF to an X12. The original so
channel of the UDF contains the channel or email addresses to which the 824 should be
This route is assigned explicitly, bypassing the message route database.

5.3.10.2 997 Routing

997s are received as independent IN_X12_FILE_REC records. The in_chan_name field
specifies where the 997 is to be sent. This route is assigned explicitly, bypassing the me
route database.

5.3.10.3 Message Route Database

An entry in the message route database is defined by the source channel of the incomin
message, a routing field, and the destination channel of the outgoing message. The rout
include criteria such as the receiver (TO) or the filename. The wildcard entry ALL also exists
for the source channel and routing fields. If ALL is selected for these fields, all messages pa
the message routing criteria for that entry.
68 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION
Individual entries in the message route database can be activated or deactivated to control their
current status during runtime checking.

5.3.11 Queueing

If the message is being routed to a UDF channel, an OUT_X12_FILE_REC is placed in the
outgoing translation queue. If a message is being routed to any email channel, an
OUT_X12_FILE_REC is placed in the single email meta queue. For all other X12 channel
destinations, an OUT_X12_FILE_REC is placed in the queue for that channel.

Table 5-14 Message Route Database Fields (ROUTE_REC)

Field Name Type Description

active char Indicates if the entry is active or not (1=ON;
0=OFF)

type char Indicates the type of routing being used (e.g., file
name, ISA/GS TO)

cc char Indicates whether the route is a primary route or
a cc route (1=cc route; 0=primary route)

to char
[DB_ISAGS_TO_
LEN]

ISA or GS receiver (to) ID

src_channel char
[DB_CHNAME_
LEN]

Source channel, FROM field, TO field, or
filename prefix by which to route. Also contains
entry telling by which criterion to route.

id char
[DB_FILE_PATT
ERN_LEN]

Up to three-letter prefix of the received file

dest_channel char
[DB_CHNAME_
LEN]

Contains the destination channel for the route.
Also contains a destination email address when
the outgoing channel is an email interface.

gs01 GS01_ENTRY
[MAX_GS01]

GS01 value on which to route
SDD FOR ECPN VERSION 2.2 • JUNE 1999 69

SOFTWARE DESIGN DESCRIPTION FOR ECPN

aintains
e log is
nique
d in a

 the

lly,

el
5.4 Audit

The Audit CSC is responsible for creating and managing an audit trail for all messages
processed by ECPN. The SCSCs of the Audit CSC are:

• Message Log Database
• Error Queue
• Channel Log
• Incoming X12 Queue Viewer
• Message Log Viewer
• Error Queue Viewer
• Journal Data Summary (JDS) Viewer
• Raw Message Viewer
• Channel Log Viewer
• Email Domain Queue Viewer
• Channel Queue Viewer
• Rejected Email Box Viewer
• RDBMS Injector
• RDBMS Retrieval
• RDBMS Message Database
• RDBMS Table Database

5.4.1 Message Log Database

The message log database is a collection of RPC-based daily message logs. Each log m
a summary record for each message object contained within it. Each day, a new messag
created. This log has no fixed capacity and is limited only by available disk space and u
message sequence numbers (range 1 - 99,999,999). Each message object is maintaine
compressed data file stored in Daily/<yyyymmdd>/Archives/msg_objs.

The Message Log Viewer provides GUI interface access to the set of message logs and
content of each log. For a complete description of this GUI, see Section 5.4.5.

Table 5-15 Daily Message Log Database Fields (MSG_LOG_REC)

Field Name Type Description

 msn_name MSN_NAME Message Sequence Number (format:
SNNNNNNNN/YYYYMMDD). The numeric
portion starts at 00000001 for the first incoming
message of a day and is incremented sequentia
so that it represents the true order of decoded
incoming messages to the system.

in_chan_name CHAN_NAME Name of the originating communications chann

in_filename MLR_FILE_NAME Incoming file name (UDF or X12 file)
70 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

r
n the

base
n the

ause
s.

oing
in the

r
s.

base
ss.

ing
t

ror
5.4.2 Error Queue

The error queue contains summary information for each message that fails translation,
decoding, routing, or conversion. It is a single queue that spans all operational days. The error
queue is populated by the Router (as described in Section 5.3.1), the UDF to X12 Translator
(as described in Section 5.5.1), the X12 to UDF Translator (as described in Section 5.5.4), and
by outgoing communications processes (as described in Section 5.2) as follows:

• Incoming UDF messages that fail UDF to X12 translation because of semantic o
syntax errors are flagged as an error by the UDF to X12 Translator and placed i
error queue by the Router process.

• Incoming UDF messages that fail UDF to X12 translation because of internal data
lookup errors are flagged as an error by the UDF to X12 Translator and placed i
error queue by the Router process.

• Incoming X12 or post UDF to X12 translation messages that fail X12 decode bec
of semantic or syntax errors are placed in the error queue by the Router proces

• Incoming X12 or post UDF to X12 translation messages that do not have an outg
route available in the route database (for any piece of the message) are placed
error queue by the Router process.

• Outgoing UDF messages that fail X12 to UDF translation because of semantic o
syntax errors are placed in the error queue by the X12 to UDF Translator proces

• Outgoing UDF messages that fail X12 to UDF translation because of internal data
lookup errors are placed in the error queue by the X12 to UDF Translator proce

TOR long Time that the incoming file was received on the
communications channel

TOP long Time that the Router process completed process
the incoming file and created the message objec

recv_id ID_NAME Receiver Interchange Name (X12 ISA08 field)

send_id ID_NAME Sender Interchange Name (X12 ISA06 field)

ic_number int ISA Interchange Control Number (X12 ISA13
field)

msg_size int Number of bytes in the message

error_mask int Identifies the type of error for messages in the er
queue

Table 5-15 Daily Message Log Database Fields (MSG_LOG_REC) (Continued)

Field Name Type Description
SDD FOR ECPN VERSION 2.2 • JUNE 1999 71

SOFTWARE DESIGN DESCRIPTION FOR ECPN

flicts
iter

ng

rror

e

dd>/
ta.

s logs
ing or

• Outgoing X12 messages that fail segment terminator conversion because of con
between the channel configuration record and the message content (target delim
pre-exists in the outgoing message) are placed in the error queue by the outgoi
communications process.

This error queue has no fixed capacity and is limited only by available disk space. The E
Queue Viewer (described in Section 5.4.6) provides a GUI for viewing and processing the
queue entries.

5.4.3 Channel Log

A channel log contains a record for each receipt or transmission on a channel. (Separat
incoming and outgoing channel logs exist for each channel.) The actual text received or
transmitted is maintained in a compressed text data file that is stored in Daily/<yyyymm
ChannelLogs/<channel>/indata and Daily/<yyyymmdd>/ChannelLogs/<channel>/outda

A channel log has no fixed capacity and is limited only by available disk space. Channel
are rolled over on a daily basis, so that a given log contains only the current day’s incom
outgoing messages. For details about the Channel Log Viewer, see Section 5.4.9.

Table 5-16 Error Queue Fields (MSG_LOG_REC)

Field Name Type Description

msn_name MSN_NAME Message Sequence Number (format:
SNNNNNNNN/YYYYMMDD)

in_chan_name CHAN_NAME Name of the originating communications
channel

in_filename MLR_FILE_NAME Incoming filename (UDF or X12 file)

TOR long Time that the incoming file was received on the
communications channel

TOP long Time that the Router process completed
processing the incoming file, and created the
message object

recv_id ID_NAME Receiver Interchange Name (X12 ISA08 field)

send_id ID_NAME Sender Interchange Name (X12 ISA06 field)

ic_number int ISA Interchange Control Number (X12 ISA13
field)

msg_size int Number of bytes in the message

error_mask int Identifies the type of error for messages in the
error queue
72 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
5.4.4 Incoming X12 Queue Viewer

The Incoming X12 Queue Viewer displays the records contained in the incoming X12 queue
(described in Section 5.2.8). For the location of the data stored, see Section 5.4.3.

5.4.5 Message Log Viewer

The Message Log Viewer is implemented through the MsgLog application and its interface
with the RPC message log databases. This GUI application provides the ECPN administrator
with a tabular form of summary information for each message that is processed by the Router
module (described in Section 5.3.1).

The Message Log Viewer interfaces with the RPCServer (described in Section 5.1.1) to obtain
all message log information. The Message Log Viewer is able to connect to any reachable
ECPN RPCServer across a TCP/IP network and obtain message log information stored on that
host. For the location of the data stored, see Section 5.4.1.

The ECPN administrator can reroute or retranslate messages through the MsgLog application
in accordance with the rerouting and retranslating functionality provided by the Error Queue
Viewer application (described in Section 5.4.6). Rerouting or retranslating that message from
the Message Log Viewer removes the message record from the error queue.

The tabular information provided by this application is a formatted version of the contents of
the RPC-based message log. For a listing of these fields, see Table 5-15. The ECPN
administrator can sort the records on any column in the table of records. The JDS Viewer (see
Section 5.4.7) and the Raw Message Viewer (see Section 5.4.8) can be invoked for viewing
individual message log entries. Message Log entries may also be annotated from the Message
Log Viewer.

5.4.6 Error Queue Viewer

The Error Queue Viewer is implemented through the MsgLog application and its interface with
the RPC-based error queue. This application interfaces with the RPCServer (described in
Section 5.1.1) to obtain all error queue information. The Error Queue Viewer is able to connect
to any reachable ECPN RPCServer across a TCP/IP network and obtain error queue
information stored on that host.

The ECPN administrator has the ability to clear records from the error queue by deleting them.
Note that deleting a record from the error queue does not remove the message from the system.
The message is still in the message log database (described in Section 5.4.1) and can be viewed
via the Message Log Viewer.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 73

SOFTWARE DESIGN DESCRIPTION FOR ECPN

ic or

 the

reroute
 the

c or
essage
on

slate
itial
ssage

oing
k to the
 the
ssing.
 the

d the

ror

e
he
Because an ECPN administrator cannot modify messages, the following types of failed
messages cannot be resolved by a reroute or retranslation. The only way to remove these
messages from the error queue is to delete them.

• Incoming UDF messages that failed UDF to X12 translation because of semant
syntax errors can be sent back to the UDF to X12 Translator with a retranslate
operation. The message will fail again and be placed back in the error queue by
Router process.

• Incoming X12 or post UDF to X12 translation messages that failed X12 decode
because of semantic or syntax errors are sent back to the Router process with a
operation. The message will fail again and be placed back in the error queue by
Router process.

• Outgoing UDF messages that failed X12 to UDF translation because of semanti
syntax errors are sent back to the Router process with a reroute operation. The m
will fail again and be placed back in the error queue by the X12 to UDF translati
process.

The ECPN administrator can clear the following message types from the error queue by
rerouting or retranslating them:

• Incoming UDF messages that failed UDF to X12 translation because of internal
database lookup errors are sent back to the UDF to X12 Translator with a retran
operation. If the ECPN administrator has updated the database to resolve the in
lookup failure, the message will continue through processing. Otherwise, the me
will fail again and be placed back in the error queue by the Router process.

• Incoming X12 or post UDF to X12 translation messages that did not have an outg
route available in the route database (for any piece of the message) are sent bac
Router process with a reroute operation. If the ECPN administrator has updated
database with a route for the message, the message will continue through proce
Otherwise, the message will fail again and be placed back in the error queue by
Router process.

• Outgoing UDF messages that failed X12 to UDF translation because of internal
database lookup errors are sent back to the router and then to the X12 to UDF
Translator process with a reroute operation. If the ECPN administrator has update
database to resolve the initial lookup failure, the message will continue through
processing. Otherwise, the message will fail again and be placed back in the er
queue by the X12 to UDF Translator process.

NOTE: Reroute and retranslate actions actually remove the message from th
queue; but, because the message fails again, it is immediately placed back in t
queue.
74 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

ators
 reroute
 the
sage
tions

e

e JDS

Queue

d from

red,

 of
ied
ble for
ns are

er

age
 a

• Outgoing X12 messages that failed segment terminator conversion, due to termin
and separators in the message body, are sent back to the Router process with a
operation. If the ECPN administrator has updated the channel record to resolve
initial conflict, the message will continue through processing. Otherwise, the mes
will fail again and be placed back in the error queue by the outgoing communica
process.

The tabular information provided by the Error Queue Viewer is a formatted version of th
content of the RPC-based error queue. For a listing of these fields, see Table 5-16. The ECPN
administrator has the ability to sort the records on any column in the table of records. Th
Viewer (see Section 5.4.7) and the Raw Message Viewer (see Section 5.4.8) can be invoked for
individual error queue entries. Error Queue entries may also be annotated from the Error
Viewer.

5.4.7 Journal Data Summary (JDS) Viewer

The JDS Viewer provides a common GUI for displaying the message content, identified
message errors, and all associated data and actions for the message object. It is invoke
the Message Log Viewer (described in Section 5.4.5), the Error Queue Viewer (described in
Section 5.4.6), the ObjectMMI (described in Section 5.4.14), the Email Domain Viewer
(described in Section 5.4.10), and the outgoing channel logs. For the location of the data sto
see Section 5.4.1.

The message content is formatted in a pane with standardized graphic symbols in place
delimiters and with placeholder text for any binary data fields (X12 BIN02 fields). Identif
errors are described in a separate error text pane. Previous and Next buttons are availa
navigating through the highlighted errors in the message body. Associated data and actio
represented in yet another pane. The content of this pane is described in Table 5-17.

Table 5-17 JDS Viewer Message Journal Pane

Field Name Description

General Info Contains content descriptions that are applicable to the whole
message, including: ISA Sender, ISA Receiver, IC Number, numb
of message segments, message size in bytes, received delimiters

Errors Contains a list of message processing errors along with the mess
segment and offset values in which the errors were identified. For
complete list of possible error type/strings, see Table 5-2.

Annotations Contains a list of annotations entered by the ECPN administrator
including the time, administrator name, administrator host, and
annotation text
SDD FOR ECPN VERSION 2.2 • JUNE 1999 75

SOFTWARE DESIGN DESCRIPTION FOR ECPN
The JDS Viewer is not a separate application but is a common library routine available in a C/
Motif version. The applications invoking this routine retrieve all message object data through
the RPCServer (described in Section 5.1.1) and have the ability to connect to any reachable
ECPN RPCServer across a TCP/IP network and obtain message object data stored on that host.

The ECPN administrator has the ability to append annotations to a message object through the
JDS Viewer. These annotations include the ECPN administrator name, client host name, time
stamp, and text. These append-only annotations are processed through the RPCServer.

5.4.8 Raw Message Viewer

The Raw Message Viewer provides a common GUI for displaying the raw message content
(i.e., the content of a message as received). It is invoked from the Message Log Viewer
(described in Section 5.4.5), the Error Queue Viewer (described in Section 5.4.6), the channel
logs, and the ObjectMMI (described in Section 5.4.14).

For a message received on an X12 channel, the content is extracted from the segments of a
message object. For a message received on a UDF channel, the content is extracted from the
saved UDF buffer in the message object. In either case, the content is displayed in a single pane
with each unprintable character replaced with the octal representation of the byte value.

The Raw Message Viewer is not a separate application but is a common library routine
available in a C/Motif version. The applications invoking this routine retrieve all message
object data through the RPCServer (described in Section 5.1.1), and have the ability to connect
to any reachable ECPN RPCServer across an IP network and obtain message object data stored
on that host. For the location of the data stored, see Section 5.4.1.

Linkages Contains a list of message object linkage information such as parent
MSN (for system-generated message objects)

GS Info Contains a list of GS information including the GS From and To
addresses and the GS Control Number.

Action Summary Contains a list of actions taken with the message, along with the time,
channel (where applicable), ECPN administrator/host name (where
applicable).

Table 5-17 JDS Viewer Message Journal Pane (Continued)

Field Name Description
76 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

SNs
 the
SN
iginal
of the
E

gle
tion
 a

om the
l
changes

ail

/

sed

in
5.4.9 Channel Log Viewer

The Channel Log Viewer displays the files sent or received on each channel. The following
fields are displayed by the Channel Log Viewer:

• Filename
• Byte size
• Time of receipt/transmission

Each field is sortable by clicking the column heading. For the outgoing channel log, the
information above is displayed in a file folder format. Opening a folder reveals the list of M
and ICNs transmitted in that file. Selection of an MSN invokes the JDS Viewer. Viewing
file content at this level will display a two-pane window, with the top pane listing each M
transmitted in the file. Within each MSN, the actual GS and ST segments sent from the or
ISA envelope are listed. For both incoming and outgoing channel logs, the bottom pane
window shows the text as it was actually received or sent, to include email headers, MIM
encoding, conversions for ISA05/06 overwrite, segment terminator replacement, and sin
ISA/GS/ST. If it is a UDF channel, the UDF text is shown in the bottom pane. For the loca
of the data stored, see Section 5.4.3. Both incoming and outgoing logs allow the user to save
file’s text to a file on disk, as well as search the file text for a specified string.

The ECPN administrator can select file retransmit to requeue the same GS segments fr
original file (described in Section 5.3.6). The content will be placed in the outgoing channe
queue for transmission. The retransmit operation can be used to resend messages after
have been made to the channel’s configuration.

Table 5-18 Channel Log Fields (CHNL_LOG_REC)

Field Name Type Description

filename SHORT_FILE_NAME Filename on remote site (Message ID for em
channels)

ftime long Time message was received/transmitted from
to channel

filesize unsigned long Size of the file in bytes

data_offset unsigned long Offset to data for the message in compres
file

msn_length unsigned long Number of bytes of MSN/GS-related data
compressed data file

text_length unsigned long Number of bytes containing message in
compressed text data file
SDD FOR ECPN VERSION 2.2 • JUNE 1999 77

SOFTWARE DESIGN DESCRIPTION FOR ECPN
5.4.10 Email Domain Queue Viewer

This application provides a combined view of the email stats database (see Table 5-7) and the
email domain channel queue. The viewer application uses a tree widget with branches
representing domains and leaves representing the MSNs in the queue records.

5.4.11 Channel Queue Viewer

The Channel Queue Viewer application provides a listing of records queued to go out a channel
queue. The fields displayed in the Channel Queue Viewer are the MSN, the time of queuing,
and, for files destined for a UDF channel, the outgoing UDF file name. The raw message
viewer (described in Section 5.4.8) or the JDS Viewer (described in Section 5.4.7) may be
invoked from the Channel Queue Viewer. The user may delete a queue entry, with the option
of placing it into the error queue.

5.4.12 Rejected Email Box Viewer

The RejectedEmail application provides a view of the contents of the rejected email mailbox.
The rejected email is stored in the following file: /h/data/global/EC/Messages/rejected. For a
description of received email processing and rejection, see Section 5.2.6. The ECPN
administrator can select a message to view and can reinject a message after modifying the
channel configurations to attribute the message to a particular channel. The Rejected Email
Box Viewer displays the From address, the message id, and the reason for email rejection.
78 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
5.4.13 RDBMS Injector

The RDBMS injectors, ObjInject and TrnInject, process data that is appended to the RDBMS
Queue (OUT_RDBMS_REC) and the Transaction Queue (OUT_TRANS_REC) respectively.
These queues are populated by the X12 Message Processing CSC (described in Section 5.3)
and the Communications CSC (described in Section 5.2). The Router populates the RDBMS
Queue with data associated with the message envelope. The Router, Comms process (described
in Section 5.2.2), and EmailSend process (described in Section 5.2.5) populate the Transaction
Queue with data associated with transactions performed by ECPN on a particular message
(e.g., received, transmitted).

The RDBMS injectors pull data (listed in Table 5-19 and Table 5-20) off their respective
queues and inject it into the RDBMS message database (described in Section 5.4.15).

The RDBMS injectors are written in a combination of C and embedded Standard Query
Language (SQL).

Table 5-19 RDBMS Queue Table (OUT_RDBMS_REC)

Field Name Type Description

msn_name MSN_NAME Message Sequence Number (format:
SNNNNNNNN/YYYYMMDD)

ic_number int Interchange control number

recv_id ID_NAME ISA To field

send_id ID_NAME ISA From field

gs_ctrl_no int GS control number

gs_to ID_NAME GS To field

gs_from ID_NAME GS From field

st_ctrl_no ST_NUM ST control number

trans_type ST_TYPE Transaction message type (e.g., 850, 843,
836)

po_number PO_NUM Purchase order number

solicitation SOL_NUM Solicitation number
SDD FOR ECPN VERSION 2.2 • JUNE 1999 79

SOFTWARE DESIGN DESCRIPTION FOR ECPN
5.4.14 RDBMS Retrieval

The RDBMS retrieval application (ObjectMMI) provides a Motif GUI interface for directing a
retrospective search of the RDBMS message database (described in Section 5.4.15). This
application constructs a dynamic SQL query (based on data input from the ECPN
administrator), executes the query, and presents the retrieved data in a scrolling text window.
For any selected entry in the scrolling text window, the user can invoke the Journal Data
Summary Viewer (described in Section 5.4.7) or view a list of transactions that have occurred
on the message.

The ECPN administrator may enter data values in the following fields to direct the
retrospective search:

• MSN
• ISA Control Number
• ISA From
• ISA To
• GS Control Number
• GS From
• GS To
• ST Control Number
• ST Type
• Channel
• Purchase Order Number
• Solicitation Control Number
• Filename
• Date Range

Table 5-20 Transaction Queue Table (OUT_TRANS_REC)

Field Name Type Description

msn_name MSN_NAME Message Sequence Number (format:
SNNNNNNNN/YYYYMMDD)

trans_code int Type of action (e.g., RECV, XMIT)

trans_dtg long Time of action

channel_name CHAN_NAME Channel associated with action

byte_count int Size of the message

file_name SHORT_FILE_NAME Remote side file name
80 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
5.4.15 RDBMS Message Database

The RDBMS functions are implemented using an Oracle database. The RDBMS tracks
messages based upon message attributes. For example, it is common for site personnel to look
up messages based on the Purchase Order Number or Solicitation Number contained within a
transaction or by the filename under which the message was transmitted to ECPN. The
RDBMS message database contains derived message information on each message processed
by the ECPN. The data is stored in two tables: a message object table and a transaction table.
The message object table contains ISA, GS, and ST fields from the message object. The
transaction table stores information on transactions that occurred for a given message. This
database is queried via the RDBMS retrieval application (described in Section 5.4.14). New
RDBMS message tables are created each day to hold information on all messages received on
that day. The RDBMS table database (see Section 5.4.16) contains information on which
RDBMS message tables are currently loaded on the system. The archived tables are stored
under Daily/<yyyymmdd>/Archives/ORACLE.

The fields maintained within the message database are listed in Table 5-21.

Table 5-21 RDBMS Message Database Fields

Field Name Type Description

msn_count int Sequence number portion of the MSN

msn_date date Date portion of the MSN

ec_schema_ver int Schema version number

isa_cntl_num int Interchange Control Number (ISA13)

isa_from char [ISA_MAX] ISA Sender ID (ISA06)

isa_to char [ISA_MAX] ISA Receiver ID (ISA08)

gs_cntl_num int Group Control Number (GS06)

gs_from char [GS_MAX] GS Sender ID (GS02)

gs_to char [GS_MAX] GS Receiver ID (GS03)

st_cntl_num char
[ST_CNTL_NUM_MAX]

Transaction Set Control Number (ST02)

st_type char [ST_TYPE_MAX] Transaction Set ID Code (ST01)

po_number char [PO_NUM_MAX] Purchase Order Number (BEG03)

solicit_number char [SOLIT_NUM_MAX] Solicitation Control Number (BQT02)

trans_id int Unique daily transaction identification

trans_code int Indicates receipt, transmission, etc.

msn_count int Number of MSNs in the message

msn_date int Date of the MSN
SDD FOR ECPN VERSION 2.2 • JUNE 1999 81

SOFTWARE DESIGN DESCRIPTION FOR ECPN
5.4.16 RDBMS Table Database

The RDBMS table database maintains a list of which RDBMS message databases are currently
loaded within ECPN. This information is accessed via the RDBMS retrieval application
(described in Section 5.4.14).

The fields maintained within the table database are listed in Table 5-22.

trans_dtg date Transaction date-time stamp

channel char [CHANNEL_MAX] Incoming or outgoing channel

byte_count int Number of bytes in message

file_name char
[SHORT_FILENAME_MAX]

Filename in remote system

site_id char Site identification character

Table 5-21 RDBMS Message Database Fields (Continued)

Field Name Type Description

Table 5-22 RDBMS Table Database Fields

Field Name Type Description

table_name char [25] Name of daily table

activity char [3] Action (e.g., created, archived, restored,
merged)

act_date date Activity date-time stamp

row_count int Number of rows in table

file_location char [1024] Location of backup file
82 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

ive or
annel

ering

bers
esses.
ation.

s
5.5 Translation

The Translation CSC is responsible for converting incoming (to ECPN) User Defined File
(UDF) messages to ANSI X12 messages, as well as converting outgoing (from ECPN) ANSI
X12 messages to UDFs. The UDF format represents any format used by a remote system to
which ECPN is connecting. The Translation CSC consists of the following SCSCs:

• UDF to X12 Translator (InXlator)
• X12 to UDF Translator (OutXlator)
• Trading Partner Database
• System Setup Database

There are two variations of the translator program running on the ECPN. One variation
provides translation from UDFs to X12s for all UDFs sent to ECPN from Government
agencies. The other variation provides X12 to UDF translation for X12s to be sent to
Government UDFsites from ECPN. For each translation that occurs, ECPN sends posit
negative acknowledgments to one or more email addresses as configured in the edit ch
window’s ADMIN tab. The trading partner database contains trading partner information
necessary for converting UDF addressing schemes to a standard Data Universal Numb
System (DUNS) addressing scheme for X12 messages.

The system setup database holds start and end boundaries for Interchange Control Num
(ICNs) and Group Control Numbers (GCNs), as well as the ECPN site’s Interchange addr
These items are necessary for generating the X12 envelope during a UDF to X12 transl

5.5.1 UDF to X12 Translator

This section describes how a UDF sent to ECPN is translated to an X12 and routed to it
destination. The following items are discussed:

• Processing Flow
• Channel Configuration
• Maps and TSI/Mercator
• UDF to X12 Processing Details
SDD FOR ECPN VERSION 2.2 • JUNE 1999 83

SOFTWARE DESIGN DESCRIPTION FOR ECPN
5.5.1.1 Processing Flow

Figure 5-2 depicts a UDF being received by ECPN.

Figure 5-2 UDF to X12 Processing Flow: Translation

The incoming communications processes queue the UDF to the incoming translator for further
processing. The translator uses the Mercator API to run the appropriate maps, resulting in the
translation of the UDF to an X12. The X12 is passed to the router for processing. See
Table 5-24 for the list of items (e.g., 824) placed on the Incoming X12 Queue.

Communications
Incoming Router

SENDER

Maps

UDF

X12, Status, 824 X12, UDF

Trading Partner

UDF

Communication flow

Original Message

UDF to X12
Translator

Mercator API
Library

System Setup
Database

Database
84 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
Figure 5-3 depicts the processing done by the router after it receives information from the UDF
to X12 translator.

Figure 5-3 UDF to X12 Processing Flow: Decoding/Routing

The router links this information together so that an ECPN administrator can track which X12
was produced from which UDF and what type of acknowledgment was sent to the message
originator.

If the translation was successful, the router sends the X12 to the appropriate outgoing
communications process to be delivered to the receiver.

If the sender was configured to receive acknowledgments (824 UDF), the router also queues
the 824 X12 to the X12 to UDF translator. The translator loads the appropriate maps, translates
this 824 X12 ack to a 824 UDF and queues it to the outgoing communications process
associated with the sender of the original UDF.

5.5.1.2 Channel Configuration

A communications channel can be configured for receiving/sending only one family of
messages (e.g., X12, SPS, SAACONS, APADE). In other words, a channel cannot receive/
send a mixture of messages from different families.

Router
Outgoing

Communications

RECEIVER

X12
From UDF to X12 Translator

X12, Status, 824 X12, UDF

X12

824 X12

Maps

SENDER

824 UDF
824 UDFX12 to UDF

Translator

Mercator API
Library

Communication flow

Original Message

Acknowledgment
SDD FOR ECPN VERSION 2.2 • JUNE 1999 85

SOFTWARE DESIGN DESCRIPTION FOR ECPN

base.
veys

 for
ly the
5.5.1.3 Maps and TSI/Mercator

The UDF to X12 translator uses TSI’s Mercator API library to:

• bind individual UDFs within a multiple UDF file.
• parse the individual UDFs.
• load the appropriate map, based on the map family configured in the channels data
• execute the map, resulting in parsing of the UDF and generation of an X12 that con

the same information as the UDF.

Most of the UDF families have two maps, one for translating UDFs to X12s and another
translating X12s to UDFs. A few families (e.g., those associated with DTS) may have on
X12 to UDF map. Refer to the Mapper’s Guide for Electronic Commerce Processing Node for
details about the mapping process.

5.5.1.4 UDF to X12 Processing Details

1. The communications channel for receiving UDFs from the sender is set to the UDF family
that the sender transmits.

2. The associated comms process opens the UDF to X12 translation queue.

3. For each file that is successfully received, during the conversion, the communication
process:

a. creates a queue entry structure of type UDF2X12_QREC, with members as noted in
Table 5-23.

b. appends that queue entry to the UDF to X12 translation queue.
86 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

:

d for

F

ope.

te

s
Once the session is done, the communication process closes the queue.

4. The UDF to X12 translator process opens two queues: the UDF to X12 translation queue
to get entries made by the communication processes and the incoming X12 queue for
giving the results to the router.

5. For each entry retrieved from the UDF to X12 queue, the translator:

a. runs the premap which binds individual UDFs within a multiple UDF file. This step
prepares the intermediate UDF files that will be passed through the UDF to X12 map.

b. forms the X12 file name to which the translated output will be written.

c. calls the translator support function, “UDF2X12”, to translate the UDF. This function

• loads the appropriate map(s) for Mercator, based on the map family configure
the channel.

• calls functions from the Mercator API library to perform the translation from UD
to X12. During this operation, lookups are performed on the trading partner
database and the system setup database in order to generate the X12 envel

Table 5-23 Comms to Translation Queue Fields for UDF to X12 Translation (UDF2X12_QREC)

Field Name Type Description

orig_filename SHORT_FILE_NAME Name of the file as it was named on the remo
system

udf_filename SHORT_FILE_NAME Name of the UDF file on ECPN
(a temporary name)

udf_chan_name CHAN_NAME Name of the channel on which the UDF file ha
been received

udf_msg_type CHAN_MSG_TYPE UDF family to which the UDF belongs (e.g.,
SPS)

TOR long Time of receipt. ECPN system time when the
UDF file was received.

reproc_MSN MSN_NAME Message Sequence Number
(format: SNNNNNNN/YYYYMDD)
used only when this message is being
retranslated
SDD FOR ECPN VERSION 2.2 • JUNE 1999 87

SOFTWARE DESIGN DESCRIPTION FOR ECPN

lure of

r

essed

queue

in

he

n

me
• generates an 824 “acknowledgment” message, concerning the success or fai
the translation, which is sent back to where the UDF originated.

• interacts with the trading partner database and the system setup database fo
generating envelope information for the resulting X12.

d. constructs an IN_X12_FILE_REC.IN_UDF2X12_REC entry (see Table 5-24), and
places it in the Incoming X12 queue.

6. After all of the individual transactions that comprise the original UDF file have been
processed, ECPN deletes the local copy of the original UDF file and removes the proc
entry from the UDF to X12 translation queue.

Translation success, TPDB lookup failure, and UDF errors are appropriately noted in the
record.

Table 5-24 Translator to Router Queue Fields for UDF to X12 Translation (IN_UDF2X12_REC)

Field Name Type Description

genx12_and_824 struct UDF2X12_REC

x12_filename SHORT_FILE_NAME Name of the translated X12 file

udf_filename SHORT_FILE_NAME Name of the UDF file on ECPN that resulted
the X12 (individual transaction file)

xltr_error_type short Value from the enum XLTR_ERROR_TYPE
that indicates the status of running a map

errfile SHORT_FILE_NAME Name of the error file that was produced by t
translator with detailed errors found while
translating the UDF

TOX unsigned long Time of translation. ECPN system time whe
the UDF file was translated

gen824_filename SHORT_FILE_NAME Name of the 824 translation status file that
is sent back to the sender if so chosen

sectinfo_filename SHORT_FILE_NAME Name of a file that has info on “groups” of
messages (e.g., for IPC)

pull_filename SHORT_FILE_NAME Name of the UDF file on the remote system

in_chan_name CHAN_NAME Name of the channel on which this UDF ca
into ECPN

udf_msg_type CHAN_MSG_TYPE UDF family to which this UDF belongs

TOR unsigned long Time of receipt. ECPN system time when
the UDF file was received.
88 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
Retranslating a UDF after TPDB errors are corrected:

When TPDB lookup errors occur, 824s are not sent back to the sender. It is the responsibility
of the ECPN administrator to correct the trading partner database and retranslate the UDF.
Upon retranslation, the router forms a UDF2X12_REXLATE_REC structure, filling in the
reproc_MSN field, udf_filename field, and others, and places it in the UDF to X12 translation
queue. Because the original UDF file is not kept, the translator pulls the UDF message text
from the message object and creates a file for the maps.

The translator then processes this entry just as it would process an entry made by a
communication process. The results are sent to the router in the union variant
IN_X12_FILE_REC.UDF2X12_REXLATE_REC (see Table 5-10).

5.5.2 Trading Partner Database (TPDB)

ECPN sends and receives messages to and from many different applications. Each application
implements a unique UDF. These UDFs may contain unique addressing information that must
be converted to standard X12 addressing during translation. Using the UDF address
information, the translator performs a lookup on the trading partner database to get the
corresponding X12 address.The trading partner database contains a list of addresses for each
trading partner that was either parsed from an 838 message or manually entered.
.

Table 5-25 Trading Partner Profile Database Fields for Translation

Field Name Type Description

isa_addr char [ISA_ADDR_LEN +1] ISA Address

isa_qual char [ISA_QUAL_LEN +1] ISA Address Qualifier

gs_addr char [GS_ADDR_LEN +1] GS Address

duns char [DUNS_LEN +1] Dun and Bradstreet Numbering System code

provider char [PROVIDER_LEN +1] Three-letter VAN Identification

cage char [CAGE_LEN +1] Commercial and Government Entity Code

dodaac char [DODAAC_LEN +1] DoD Activity Address Code
SDD FOR ECPN VERSION 2.2 • JUNE 1999 89

SOFTWARE DESIGN DESCRIPTION FOR ECPN
Sites register with the Central Contractor Registry (CCR) with an X12 838 (Trading Partner
Profile). The 838 is forwarded to ECPN where it is parsed to create or update trading partner
database entries. Table 5-26 lists the fields that are parsed from the 838 for inclusion in the
trading partner database.

Table 5-26 CCR 838 Parsed Fields

Segment Element Notes

020 BTP 01 -Transaction Set Purpose 00 Original
01 Cancellation
07 Duplicate - Handled as an original

02 - Reference ID

03 - Date

04 - Time

06 - Transaction Set Purpose
(For BTP01 = 00 or 07 only)

04 - Change
30 - Renewal
35 - Request Authority

07 - Reference ID

08 - Date

09 - Time

030 PLA 01 - Action Code WQ - Accept

060 N1 01 - Name Must provide one loop with N101 = KK for
registrant and N101 = WQ for activity or
agency of registrant

03 - Identification Qualifier 1 - DUNS Number
9 - DUNS+4 Number

390 ENE 01 - Communication
Environment Code

PP - Point-to-Point
SC - Service Provider (indicates ENE03
identifies a VAN)

03 - Communication Number Three-Letter VAN ID

400 N1 01 - Entity Identifier Code GP - Gateway Provider
NN - Network Name

02 - Name If N1 = NN, use to indicate full name of VAN

03 - Identification Code
Qualifier

ISA Address Qualifier

04 - Identification Code ISA Address
90 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

 using
ed.

 for

sage.
 UDF
n the
5.5.3 System Setup Database

The system setup database holds the following information that is used by the translator to fill
in the ISA05, ISA06, ICN and GCN fields when translating a UDF to an X12:

• Site ID Qualifier (ISA05)
• Site ID (ISA06)
• Starting and Ending Interchange Control Numbers (ICN) (ISA13)
• Starting and Ending Group Control Number (GCN) (GS06)

The ISA05 and ISA06 specified in this database is put into every X12 generated by the
translator. For every X12 produced, the translator increments the current ICN and GCN,
the start ICN and start GCN initially and wrapping once the ending ICN or GCN is reach

5.5.4 X12 to UDF Translator

This section describes how an X12 message that is sent to ECPN is translated to a UDF
routing/transmission to a UDF destination. The following items are discussed:

• Processing Flow
• Channel Configuration
• Maps and TSI/Mercator
• X12 to UDF Processing Details

5.5.4.1 Processing Flow

Figure 5-4 depicts an X12 being received by ECPN from a sender. The incoming
communication processes queue the X12 file to the router for further processing. After
completion of bounding and parsing, the router determines the destinations for the mes
For each destination that is configured as UDF, the router queues the X12 to the X12 to
translator for further processing. The X12 to UDF translator uses the Mercator API to ru
appropriate maps to perform the translation.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 91

SOFTWARE DESIGN DESCRIPTION FOR ECPN
Figure 5-4 X12 to UDF Processing Flow: Translation

Upon successful translation, the UDF is sent to the appropriate outgoing communications
process for delivery to the receiver. The 997 X12 is sent to the router with its destination being
the sender of the translated X12.

If the sender was configured to receive acknowledgments (997 X12s), the router queues the 997
X12 to the appropriate outgoing communications process.

If translation failed, the X12 is place in the error queue for handling by the ECPN administrator.

5.5.4.2 X12 to UDF Processing Details

1. The communications channel for sending the UDFs to the receiver is designated as the
UDF family that the receiver can process.

2. The router reads an IN_X12_FILE_REC record from the incoming X12 queue.

3. The router determines the final destination of the message. If the destination channel, as
configured in the channel database, is a UDF channel, the router forms an entry of type
X122UDF_QREC and appends it to the X12 to UDF translation queue.

Communications
Incoming

Router

 997 X12

SENDER

X12

X12

X12

Maps

Trading Partner
Database

Outgoing Comms

UDF

997 X12

RECEIVER

SENDER

UDF

997 X12

X12 to UDF
Translator

Mercator API
Library
92 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

ry X12
lator
nds
reates
elling

m the

m s the

o

u d

id

4. The X12 to UDF translator process begins processing the queue entry by using the MSN
info in the entry to form a temporary X12 file. The translator support function, “x122udf”,
is then called to translate the X12 to a UDF.

Once the translator successfully completes processing the entry, it removes the tempora
file it generated and deletes the entry from the X12 to UDF translation queue. The trans
constructs an IN_X12_FILE_REC.X122UDF_REC entry for the generated 997 and appe
the entry to the incoming X12 queue for the router to process further. The translator also c
and appends an OUT_CHAN_REC entry to the appropriate outgoing channel queues, t
the outgoing communications process to transmit the generated UDF.

On translation failure, the X12 is placed in the error queue, and the entry is removed fro
X12 to UDF queue.

Success or failure is appropriately indicated in the X122UDF_REC.

Table 5-27 Router to Translator Queue Fields for X12 to UDF Translation (X122UDF_QREC)

Field Name Type Description

sn MSN_NAME Message Sequence Number that uniquely identifie
X12 message on the ECPN

ut_chan_name CHAN_NAME Name of the channel on which the UDF file is
to be sent

df_msg_type CHAN_MSG_TYPE UDF family to which the X12 should be translate

entifier int Used internally to maintain queues

Table 5-28 Translator to Router Queue Fields for X12 to UDF Translation (X122UDF_REC)

Field Name Type Description

msn MSN_NAME Message Sequence Number for the X12 that
was just translated

identifier int Used internally to maintain queues

gen997_filename SHORT_FILE_NAME] Name of the 997 X12 file

xltr_error_type short Value from the enum XLTR_ERROR_TYPE
that indicates the status of running a map

out_chan_name CHAN_NAME Name of the channel on which the UDF
was sent
SDD FOR ECPN VERSION 2.2 • JUNE 1999 93

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-29 Translator to Comms Queue Fields for X12 to UDF Translation (OUT_CHAN_REC)

Field Name Type Description

msn_name MSN_NAME Message Sequence Number for the X12 that
was just translated

out_udf_filename SHORT_FILE_NAME Name of the UDF file that was generated
from translating the X12

site_id char [SITE_ID_LEN] Three-character file extension denoting the
site id on the remote and used in naming the
UDF file that’s pushed to the remote site.
(Used for SAACONS only)

xvar char [XVAR_LEN] Value passed from the X12 that was
translated and used in naming the UDF file
that’s pushed to the remote site

identifier int Used internally to maintain queues

ttype char [TTYPE_LEN] (Used by SAACONS only) One-character
file prefix that identifies the transaction type
and used in naming the UDF file that’s
pushed to the remote site
94 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

having

,500

n
5.6 Alert Management

The Alert Management CSC is responsible for providing a single mechanism for generating
and managing alerts across the ECPN CSCI. The Alert Management CSC consists of the
following SCSCs:

• Alert Daemon
• Alert Notifier (NEPAlertNotify)
• Alert Notifier Database

5.6.1 Alert Daemon

The alert daemon manages alerts generated by the ECPN CSCI. Generated alerts are stored on
disk and delivered to clients upon request. Applications request alerts from the alert daemon
based on the alert type. The alert daemon is also responsible for marking each alert as
been dismissed or not.

The circular queue used by the alert daemon to manage alerts contains a maximum of 2
ALERT_QUEUE_SIZE entries.

Implementation - Implemented in the libAlerts library archive and the AlertDaemon server.

5.6.2 Alert Notifier

The alert notifier (NEPAlertNtfy) is a client of the alert daemon (described in Section 5.6.1)
that receives alerts and performs the notification actions defined for the alert in the alert notifier
database. An NEPAlertNtfy process is started for each user session. The alert notifier performs
two notification actions:

• Electronic mail (which optionally includes the data file causing the alert)
• Personal beeper or phone dialing

5.6.3 Alert Notifier Database

The alert notifier database is a data element that defines the notification action(s) to be
performed when an alert is generated. An entry in the database consists of the alert criteria and
one or more notification actions. The notification methods are via email or dialing a phone
number (i.e., notification via beeper or cellular phone).

The alert notifier database is populated through the AlertNtfyDB user interface. The alert
notifier database is limited to 200 entries, and each entry can contain up to 10 notificatio
actions.

Implementation - Implemented in the AlertNtfyDB application.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 95

SOFTWARE DESIGN DESCRIPTION FOR ECPN
5.7 Executive

The executive manages all ECPN processes. It launches processes when it receives a request
and manages the shutdown of processes when they exit. Requests for process launch come from
either a GUI event or ecedi_srv, which is a script that launches the EC_COE services at init
level 4.

Table 5-30 Alert Notifier Fields

Field Name Type Description

type int Type of alert to notify on (corresponds to alert types in
NEPAlertList datafile - e.g., “FILE ACCESS
ERROR”)

key char[] Channel to match against before notifying. If set to
“ALL”, all alerts of the above type are notified,
regardless of which channel (if any) they were
associated with.

num int Number of notification actions set for an alert

method int Notification method - EMAIL or BEEPER

active int Alert notification activated

address char[] Address to email notifications should be sent

phone char[] Number to dial for beeper notifications

confirm int Flag for whether or not to include file (if present) in
email notifications
96 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SDD FOR ECPN VERSION 2.2 • JUNE 1999 97

SOFTWARE DESIGN DESCRIPTION FOR ECPN

6.0 Requirements Traceability
The traceability between the ECPN requirements and the version of ECPN in which the
requirements were met is addressed in the Software Requirements Specification (SRS) for
Electronic Commerce Processing Node.

SOFTWARE DESIGN DESCRIPTION FOR ECPN
7.0 Acronyms
The following acronyms and abbreviations appear in this document:

AIS: Automated Information System

ANSI: American National Standards Institute

API: Application Programming Interface

ASCII: American Standard Code of Information Interchange

COTS: Commercial Off-the-Shelf

CSC: Computer Software Component

CSCI: Computer Software Configuration Item

CSU: Computer Software Unit

DID: Data Item Description

DISA: Defense Information Systems Agency

DoD: Department of Defense

EBCDIC: Extended Binary Coded Decimal Interchange Code

EC/EDI: Electronic Commerce/Electronic Data Interchange

ECPN: Electronic Commerce Processing Node

Email: Electronic Mail

FIFO: First-In, First-Out

FTP: File Transfer Protocol

GUI: Graphical User Interface

ID: Identification

IDD: Interface Design Description

INRI: Inter-National Research Institute
98 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
I / O: Input / Output

JDS: Journal Data Summary

MIME: Multi-purpose Internet Mail Extension

MSN: Message Sequence Number

PCM: Process Control Module

RDBMS: Relational Database Management System

RPC: Remote Procedure Call

SCSC: Sub-Computer Software Component

SDD: Software Design Description

SMTP: Simple Mail Transport Protocol

SQL: Standard Query Language

SRS: Software Requirements Specification

TCP/IP: Transmission Control Protocol/Internet Protocol

UDF: User-Defined File

UTC: Universal Time Coordinate
SDD FOR ECPN VERSION 2.2 • JUNE 1999 99

SOFTWARE DESIGN DESCRIPTION FOR ECPN
This page has been intentionally left blank.
100 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

e
Appendix A Alerts
Alerts are generated by ECPN to notify users of specific conditions or problems. A description
of each alert is provided in Appendix B of the Software User’s Guide for Electronic Commerc
Processing Node.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 101

SOFTWARE DESIGN DESCRIPTION FOR ECPN
Appendix B System Capacities
The following list of system data repositories have unlimited capacities. They are limited only
by the amount of disk space available.

• Routing Database
• Channel Database
• Trading Partner Database
• Message Log
• Error Queue
• System Log
• Outgoing Email Queue
• Incoming X12 Queue
• Incoming Translation Queue
• Outgoing Translation Queue
• Interface Status Database
• Message Database

The capacities of other data repositories are as listed in Table B-1.

Table B-1 Capacities

Data Repository Capacity Description

Alert Database 2500 Circular queue which wraps at 2500

Alert Notify Database 200 entries with
10 notifications
per entry

Maximum number of entries is 200. Each entry
can have 10 notification actions.
102 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

ic
2 or
Appendix C Glossary
Computer Software Configuration Item (CSCI) - A CSCI is a sub-component of a CSC.

Computer Software Configuration (CSC) - A CSC is a sub-component of a System.

Computer Software Unit (CSU) - A CSU is a sub-component of an SCSC

Inbound - Describes messages being received by the government. ECPN is considered part of
the government; thus, messages received by ECPN are considered inbound messages.

Multi-purpose Internet Mail Extension (MIME) - MIME extends the format of Internet mail
to allow non-US-ASCII textual messages, non-textual messages, multipart message bodies,
and non-US-ASCII information in message headers.

Outbound - Describes messages being sent out by the government. ECPN is considered part
of the government; thus, message sent out by ECPN are considered outbound messages.

Remote Procedure Calls (RPC) - RPCs provide a way to distribute program segments across
computers in a network. This allows communication with more than one machine on a given
network while executing a program and communicating with other programs that run on the
same machine.

Simple Mail Transport Protocol (SMTP) - SMTP is Internet’s standard host-to-host mail
transport protocol.

Sub-Computer Software Component (SCSC) - A SCSC is a sub-component of a CSCI

User Defined File (UDF) - User defined file is a generic term that applies to any Electron
Commerce system that does not output data according to a defined EDI format (e.g. X1
EDIFACT). By definition, UDFs are different for different systems.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 103

SOFTWARE DESIGN DESCRIPTION FOR ECPN

 the
t be a
y()

 the

earch.

rns the

e keys.
ly set

elds
Appendix D Message Object Parse API
The following API(s) are provided to simplify parsing of the message object segments:

int AddKey(char *seg, ...)

“seg” represents the segment type of interest to the caller. “...” is a variable length list of
field numbers in that segment that the caller wants returned. The last item in this list mus
-1 as a sentinel value for the list. A field number of 1 identifies the field after seg. AddKe
returns 1 if successful in adding the key, 0 otherwise. Possible causes of failure:

 The key list is full. Currently, the caller can specify a maximum
 of 10 keys.

 seg has a string length greater that 4, the number of bytes in an
 integer.

Example: AddKey(“GS”, 5, 8, -1);

This example instructs that, for every GS in the message object, return fields 5 and 8 to
caller.

void ClearKeys()
Used to clear all the current keys added by the caller.

int SetMSN(char *msn_name)
Used to set the message object, specified by “msn_name”, on which to perform the key s
Returns 1 if successful, 0 otherwise. Possible causes of failure:

 Could not open the message object specified.

unsigned int FindSeg()
Used to find the next segment which matches any of the keys added by the caller. Retu
SegVal of the segment matched, which is equivalent to HASH(“<seg str>”). Returns 0 if
unsuccessful. Possible causes of failure:

 Reached the end of the message object.

void SetMsgObj (EC_MSG_OBJ *m)
Identifies a new message object to parse. Resets all current state information, except th
Parse routines will now start at the beginning of the message object, looking for previous
keys.

void FreeFields (char **ptrs, int num)
Frees the list of fields which were allocated by a call to FetchFields(). “ptrs” is the list of fi
and “num” represents the number of fields in the list.
104 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

ontext:
int FetchFields(char **fields)
Used to return the fields requested by the caller for the currently matched segment. The number
of char *field pointers should equal the number of fields requested by the user in the AddKey()
call, and the return order of the fields is the order in which the fields were listed
in the AddKey() call. Any field that was unable to be retrieved will be returned as NULL.
Returns the number of fields successfully retrieved for the segment.

unsigned int HASH(char *str)
HASH is a macro function which will return an unsigned integer representing the content of
“str”.

char *UNHASH(unsigned int IdVal)
Returns the string value for “IdVal”.

The following is a sample code segment representing the usage of these functions in a c

#include <string.h>
#include <strings.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <varargs.h>
#include <EC/X12Msg.h>
#include <EC/msg_obj.h>
#include <EC/Vids.h>
#include <assert.h>
#include "parse.h"
#include <EC/common.h>

void main(int argc, char**argv) {

 char msn[18];
 char *isa_fields[3], *iea_fields[2], *ref_fields[2];

 int i, no_isa = 3, no_iea = 2, no_ref = 2, no_fetched = 0;
 unsigned int seg_type;

 if (argc < 2) {
 printf("Usage: parse <full msn path/filename>\n");
 }

 ncpy (msn, argv[1], 17);

NOTE: HASH exists both as a macro (typical usage) and as a C function (for use
in debuggers). UNHASH only exists as a C function.
SDD FOR ECPN VERSION 2.2 • JUNE 1999 105

SOFTWARE DESIGN DESCRIPTION FOR ECPN
 AddKey("ISA", 1, 5, 15, -1);
 AddKey("REF", 1, 2, -1);
 AddKey("IEA", 1, 2, -1);

 if (!SetMSN(msn)) {
 printf("Couldn’t open msn %s.\n", msn);
 exit(0);
 }

 while ((seg_type = FindSeg()) != 0) {
 if (seg_type == HASH("ISA")) {
 no_fetched = FetchFields(isa_fields);
 if (no_fetched != no_isa) {
 printf("Only fetched %d of %d fields requested.\n",
 no_fetched, no_isa);
 }
 for (i = 0; i < no_isa; i++) {
 if (isa_fields[i] != NULL) {
 printf ("ISA - %s\n",isa_fields[i]);
 }
 }
 /*
 ** Because FetchField() strdups fields found, they must be
 ** freed.
 */
 FreeFields(isa_fields, no_isa);
 } else if (seg_type == HASH("IEA")) {
 no_fetched = FetchFields(iea_fields);
 if (no_fetched != no_iea) {
 printf("Only fetched %d of %d fields requested.\n",
 no_fetched, no_iea);
 }
 for (i = 0; i < no_iea; i++) {
 if (iea_fields[i] != NULL) {
 printf ("IEA - %s\n",iea_fields[i]);
 }
 }
 /*
 ** Because FetchField() strdups fields found, they must be
 ** freed.
 */
 FreeFields(iea_fields, no_iea);
 } else if (seg_type == HASH("REF")) {
 no_fetched = FetchFields(ref_fields);
 if (no_fetched != no_ref) {
 printf("Only fetched %d of %d fields requested.\n",
 no_fetched, no_ref);
106 SDD FOR ECPN VERSION 2.2 • JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN
 }
 for (i = 0; i < no_ref; i++) {
 if (ref_fields[i] != NULL) {
 printf ("REF - %s\n",ref_fields[i]);
 }
 }
 /*
 ** Because FetchField() strdups fields found, they must be
 ** freed.
 */
 FreeFields(ref_fields, no_ref);
 } else {
 printf("Unrecognized segtype\n");
 break;
 }
 }
}

SDD FOR ECPN VERSION 2.2 • JUNE 1999 107

SOFTWARE DESIGN DESCRIPTION FOR ECPN
This page has been intentionally left blank.
108 SDD FOR ECPN VERSION 2.2 • JUNE 1999

	1.0 Scope
	1.1 Identification
	1.2 System Overview
	1.3 Document Overview

	2.0 Referenced Documents
	3.0 CSCI-Wide Design Decisions
	4.0 Architectural Design
	4.1 Architectural Overview
	Figure�4�1 ECPN Component Decomposition

	4.2 Computer Software Components
	4.2.1 Data Management
	4.2.2 Communications
	4.2.3 X12 Message Processing
	4.2.4 Translation
	4.2.5 Audit
	4.2.6 Alert Management
	4.2.7 Executive

	4.3 Message Processing Flow
	4.3.1 X12 Message Processing
	Figure�4�2 X12 Message Processing

	4.3.2 UDF Message Processing
	4.3.2.1 Incoming UDF
	Figure�4�3 UDF Incoming Message Processing

	4.3.2.2 Outgoing UDF
	Figure�4�4 UDF Outgoing Message Processing

	4.3.3 X12 and UDF Message Processing
	Figure�4�5 X12 and UDF Message Processing

	4.4 Interface Design
	Table�4�1 Communication Interface COTS Products and Standards

	5.0 ECPN CSCI Detailed Design
	5.1 Data Management
	5.1.1 RPCServer
	5.1.1.1 Database, Log, and Queue Rectifications
	5.1.1.2 Database, Log, and Queue Creation

	5.1.2 Databases
	5.1.2.1 Database API

	5.1.3 Logs
	5.1.3.1 Log API

	5.1.4 Queues
	5.1.4.1 Queue API

	5.1.5 Hash Tables
	5.1.5.1 Hash Table Creation
	5.1.5.2 Hash Table Implementation
	Figure�5�1 Hash Table Data Structure

	5.1.5.3 Hash Table API
	5.1.5.4 Miscellaneous RPCServer Remote Procedure Calls

	5.1.6 Message Object
	5.1.6.1 Message Object API
	5.1.6.2 Message Object Field Descriptions
	Table�5�1 Message Object Fields (Continued)
	Table�5�2 Message Object err_type/error_expansion Values (Continued)

	5.2 Communications
	5.2.1 EditChannels
	5.2.2 Comms
	5.2.2.1 Scheduling Sessions
	5.2.2.2 Communications Sessions
	5.2.2.3 Comms Children Database
	5.2.2.4 Serial Sessions
	5.2.2.5 Kermit
	Table�5�3 Kermit Operation String/Action Relationship�
	Table�5�4 Kermit Channel Fields (AsyncStruct) (Continued)

	5.2.2.6 ZMODEM
	5.2.2.7 CLEO
	Table�5�5 CLEO Channel Fields (CleoStruct)�

	5.2.3 FTP Sessions
	Table�5�6 FTP Channel Fields (FTPStruct) (Continued)

	5.2.4 File Transfer Protocol Daemon (ftpd)
	5.2.5 Email Send Electronic Mail (email_meta/email_send)
	Table�5�7 Email Stats DB Fields (EMAIL_STATS)
	Table�5�8 Email Channel Fields (EmailStruct)�

	5.2.6 Electronic Mail Daemon (emaild)
	5.2.7 Channel Status
	Table�5�9 Channel Status Database (CHAN_STAT_REC)��

	5.2.8 Incoming X12 Queue
	Table�5�10 Incoming X12 Queue Fields (IN_X12_FILE_REC) (Continued)
	Table�5�11 UDF to X12 Translator Structure (UDF2X12_REC)

	5.2.9 Outgoing Communication Queues
	Table�5�12 Outgoing Communication Queue Fields (OUT_CHAN_REC)�

	5.2.10 Channel Database
	Table�5�13 Channel Database Fields (Continued)

	5.3 X12 Message Processing
	5.3.1 Regular Received X12 Handling
	5.3.2 Translated UDF to X12 Handling
	5.3.3 UDF to X12 Retranslate
	5.3.4 System Generated File Handling
	5.3.5 Reroute Handling
	5.3.6 Retransmit Handling
	5.3.7 Message Report Handling
	5.3.8 SPS-EDA Handling
	5.3.9 Parsing
	5.3.9.1 Element Validation
	5.3.9.2 Element Storage
	5.3.9.3 Logging and Message Object Storage

	5.3.10 Route Lookup
	5.3.10.1 824 Routing
	5.3.10.2 997 Routing
	5.3.10.3 Message Route Database
	Table�5�14 Message Route Database Fields (ROUTE_REC)�

	5.3.11 Queueing

	5.4 Audit
	5.4.1 Message Log Database
	Table�5�15 Daily Message Log Database Fields (MSG_LOG_REC) (Continued)

	5.4.2 Error Queue
	Table�5�16 Error Queue Fields (MSG_LOG_REC)�

	5.4.3 Channel Log
	5.4.4 Incoming X12 Queue Viewer
	5.4.5 Message Log Viewer
	5.4.6 Error Queue Viewer
	5.4.7 Journal Data Summary (JDS) Viewer
	Table�5�17 JDS Viewer Message Journal Pane (Continued)

	5.4.8 Raw Message Viewer
	5.4.9 Channel Log Viewer
	Table�5�18 Channel Log Fields (CHNL_LOG_REC)

	5.4.10 Email Domain Queue Viewer
	5.4.11 Channel Queue Viewer
	5.4.12 Rejected Email Box Viewer
	5.4.13 RDBMS Injector
	Table�5�19 RDBMS Queue Table (OUT_RDBMS_REC)��
	Table�5�20 Transaction Queue Table (OUT_TRANS_REC)��

	5.4.14 RDBMS Retrieval
	5.4.15 RDBMS Message Database
	Table�5�21 RDBMS Message Database Fields (Continued)

	5.4.16 RDBMS Table Database
	Table�5�22 RDBMS Table Database Fields �

	5.5 Translation
	5.5.1 UDF to X12 Translator
	5.5.1.1 Processing Flow
	Figure�5�2 UDF to X12 Processing Flow: Translation
	Figure�5�3 UDF to X12 Processing Flow: Decoding/Routing

	5.5.1.2 Channel Configuration
	5.5.1.3 Maps and TSI/Mercator
	5.5.1.4 UDF to X12 Processing Details
	Table�5�23 Comms to Translation Queue Fields for UDF to X12 Translation (UDF2X12_QREC)�
	Table�5�24 Translator to Router Queue Fields for UDF to X12 Translation (IN_UDF2X12_REC)�

	5.5.2 Trading Partner Database (TPDB)
	Table�5�25 Trading Partner Profile Database Fields for Translation�
	Table�5�26 CCR 838 Parsed Fields�

	5.5.3 System Setup Database
	5.5.4 X12 to UDF Translator
	5.5.4.1 Processing Flow
	Figure�5�4 X12 to UDF Processing Flow: Translation

	5.5.4.2 X12 to UDF Processing Details
	Table�5�27 Router to Translator Queue Fields for X12 to UDF Translation (X122UDF_QREC)�
	Table�5�28 Translator to Router Queue Fields for X12 to UDF Translation (X122UDF_REC)�
	Table�5�29 Translator to Comms Queue Fields for X12 to UDF Translation (OUT_CHAN_REC)�

	5.6 Alert Management
	5.6.1 Alert Daemon
	5.6.2 Alert Notifier
	5.6.3 Alert Notifier Database
	Table�5�30 Alert Notifier Fields �

	5.7 Executive

	6.0 Requirements Traceability
	7.0 Acronyms
	Appendix A Alerts
	Appendix B System Capacities
	Table�B�1 Capacities�

	Appendix C Glossary
	Appendix D Message Object Parse API

